Abstract
Soil pollution associated with potentially toxic elements (PTEs) from mining residues is a significant problem worldwide. The decommissioned Jebal Trozza mine, located in central Tunisia, may pose a serious problem because of the possible high concentrations of PTEs present in its wastes. This mine is a potential source of contamination for agriculture in this area due to both direct causes (pollution of agricultural soils) and indirect causes (pollution of sediments that accumulate in a dam used for irrigation). The aim of the study reported here was to assess the effects of local mining activity in two respects: (1) in terms of soil quality, as determined by soil edaphological parameters and PTEs contents in the mining wastes and local soils; and (2) in terms of biological quality, as evaluated by quantification of enzymatic activity as an indicator of bacterial activity in soils and wastes. The mine tailings contained high levels of Pb (1.83–5.95%), Zn (7.59–12.48%) and Cd (85.95–123.25 mg kg−1). The adjacent soils were also highly contaminated with these elements, with average concentrations of Pb, Zn and Cd that exceeded the European standard values for agricultural soils (3, 300 and 300 mg kg−1 for Cd, Pb and Zn, respectively). Enzymatic dehydrogenase showed zero activity in waste piles and very low activity in PTE-contaminated soils, but this activity returned to normal values as the pollution decreased, thus demonstrating the effect that the contamination load had on the health of the studied soils. A Statistical Factor Analysis clearly distinguished three groups of samples, and these are related to the influence that mining on the soils and sediments had on the PTE concentrations and their effects on the biological quality of the soil. An environmental assessment based on the enrichment factor criteria indicated risk levels that varied from strongly to severely polluted. The risk appears to be greater close to the mine, where the highest PTE levels were determined.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.
Ali, M., Elhagwa, A., Elfaki, J., & Sulieman, M. (2016). Influence of the artisanal gold mining on soil contamination with heavy metals: A case study from Dar-Mali locality, North of Atbara, River Nile State. Sudan. Eurasian Journal of Soil Science, 6(1), 28–36. https://doi.org/10.18393/ejss.284261.
Aloupi, M., & Angelidis, M. O. (2001). Geochemistry of natural and anthropogenic metals in the coastal sediments of the island of Lesvos, Aegean Sea. Environmental Pollution, 113, 211–219. https://doi.org/10.1016/S0269-7491(00)00173-1.
Amin, B., Ismail, A., Arshad, A., Yap, C. K., & Kamarudin, M. S. (2009). Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environmental Monitoring and Assessment, 148, 291–305. https://doi.org/10.1007/s10661-008-0159-z.
Antoniadis, V., Shaheen, S. M., Boersch, J., et al. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200. https://doi.org/10.1016/j.jenvman.2016.04.036.
Ayari, J., & Charef, A. (2016). Spatial distribution and contamination assessment of trace metals in agricultural soils around Sidi Ahmed Pb-Zn abandoned mine, Tunisia. International journal of innovation and applied studies, 17, 646–661.
Babbou-Abdelmalek, C., Sebei, A., & Chaabani, F. (2011). Incurred environmental risks and potential contamination sources in an abandoned mine site. African Journal of Environmental Science and Technology, 5(11), 894–915. https://doi.org/10.5897/AJEST11.151.
Baize, D. (1997). Teneurs totales en éléments traces métalliques dans les sols (France) (p. 408p). Paris: INRA Editions.
Barkouch, Y., & Pineau, A. (2016). Evaluation of the impact of mine activity on surrounding soils of Draa Lasfar mine in Marrakech-Morocco. African Journal of Environmental Science and Technology, 10(1), 44–49. https://doi.org/10.5897/ajest2015.1892.
Bouhlel, S., & Fortuné, J. P. (1985). Contribution à l’étude minéralogique et géochimique des minéraux de Pb–Zn–Cu de la province fluorée tunisienne. Notes du Service Géologique Tunisienne, 51, 155–176.
Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236. https://doi.org/10.1016/j.geoderma.2012.08.029.
Campos, J. A., Esbrí, J. M., Madrid, M. M., Naharro, R., Peco, J., García-Noguero, E. M., et al. (2018). Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere, 201, 799–806. https://doi.org/10.1016/j.chemosphere.2018.02.163.
Coulthard, T. J., & Macklin, M. G. (2003). Modeling long-term contamination in river systems from historical metal mining. Geology, 31(5), 451.
Daldoul, Gh, Souissi, R., Souissi, F., Jemmali, N., & Chakroun, H. K. (2015). Assessment and mobility of heavy metals in carbonated soils contaminated by old mine tailings in North Tunisia. Journal of African Earth Sciences, 110, 150–159. https://doi.org/10.1016/j.jafrearsci.2015.06.004.
Dold, B. (2008). Sustainability in metal mining: From exploration, over processing to mine waste management. Reviews in Environmental Science and Bio/Technology, 7, 275–295. https://doi.org/10.1007/s11157-008-9142-y.
Dos Anjos, M. J., Lopes, R. T., De Jesus, E. F. O., et al. (2000). Quantitative analysis of metals in soil using X-ray fluorescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 55(7), 1189–1194. https://doi.org/10.1016/S0584-8547(00)00165-8.
Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Role of soil enzymes in sustainable crop production. In Mohammed Kuddus (Ed.), Enzymes in food biotechnology. Amsterdam: Elsevier.
El Adnani, M., Ait Boughrous, A., Yacoubi Khebiza, M., et al. (2007). Impact of mining wastes on the physicochemical and biological characteristics of groundwater in a mining area in Marrakech (Morocco) (Impact des rejets miniers sur la qualite physico-chimique biologique des eaux souterraines d’une zone miniere dans la region de Marrakech (Maroc)). Environmental Technology, 28(1), 71–82. https://doi.org/10.1080/09593332808618762.
Elouaer, Z., Bouhamed, F., Boujelben, N., & Bouzid, J. (2016). Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia. Environmental Earth Sciences, 2016(75), 1–7. https://doi.org/10.1007/s12665-015-5035-x.
Garnit, H., Boni, M., Buongiovanni, G., Arfè, G., Mondillo, N., Joachimski, M., et al. (2018). C-O Stable Isotopes Geochemistry of Tunisian Non sulfide Zinc Deposits: A First Look. Minerals, 8(1), 13. https://doi.org/10.3390/min8010013.
Gilfrich, J. V. (1990). New horizons in x-ray fluorescence analysis. X-Ray Spectrometry, 19, 45–51. https://doi.org/10.1002/xrs.1300190204.
Grimalt, J. O., Ferrer, M., & MacPherson, E. (1999). The mine tailing accident in Aznalcollar. Science of the Total Environment, 242(1–3), 3–11. https://doi.org/10.1016/S0048-9697(99)00372-1.
Hamed, Y., Redhaounia, B., Sâad, A., Hadji, R., Zahri, F., & Zighmi, K. (2017). Hydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia). Journal of Tethys, 5(1), 33–44. https://doi.org/10.13140/RG.2.1.1193.6241.
Higueras, P., Oyarzun, R., Iraizoz, J. M., et al. (2012). Low-cost geochemical surveys for environmental studies in developing countries: Testing a field portable XRF instrument under quasi-realistic conditions. Journal of Geochemical Exploration, 113, 3–12. https://doi.org/10.1016/j.gexplo.2011.02.005.
Higueras, P. L., Sáez-Martínez, F. J., Lefebvre, G., & Moilleron, R. (2019). Contaminated sites, waste management, and green chemistry: New challenges from monitoring to remediation. Environmental Science and Pollution Research, 26, 3095–3099. https://doi.org/10.1007/s11356-018-3564-z.
Higueras, P. L., Sáez-Martínez, F. J., & Reyes-Bozo, L. (2016). Characterization and remediation of contamination: The influences of mining and other human activities. Environmental Science and Pollution Research, 23, 5997–6001. https://doi.org/10.1007/s11356-016-6388-8.
Hinojosa, M. B., García-Ruíz, R., Viñegla, B., & Carreira, J. A. (2004). Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill. Soil Biology & Biochemistry, 36(10), 1637–1644. https://doi.org/10.1016/j.soilbio.2004.07.006.
Hudson-Edwards, K. A., Macklin, M. G., Finlayson, R., & Passmore, D. G. (1999a). Mediaeval lead pollution in the River Ouse at York, England. Journal of Archaeological Science, 26(7), 809–819. https://doi.org/10.1006/jasc.1998.0357.
Hudson-Edwards, K. A., Macklin, M. G., & Taylor, M. P. (1999b). 2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. Hydrological Processes, 13(7), 1087–1102.
Hudson-Edwards, K. A., Schell, C., & Macklin, M. G. (1999c). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, Southwest Spain. Applied Geochemistry, 14(8), 1015–1030. https://doi.org/10.1016/S0883-2927(99)00008-6.
INM (Institut National de Météorologie). (2015). Les paramètres climatiques (précipitation, température, vent, évaporation et humidité relative) des stations de Kairouan, pour la période 2003–2013.
Järvan, M., Edesi, L., Adamson, A., & Võsa, T. (2014). Soil microbial communities and dehydrogenase activity depending on farming systems. Plant and Soil Environment, 10, 459–463. https://doi.org/10.17221/410/2014-PSE.
Jin, K., Sleutel, S., Buchan, D., De, N. S., Cai, D. X., Gabriels, D., et al. (2009). Changes of soil enzyme activities under different tillage practices in the Chinese Loess Plateau. Soil and Tillage Research, 104, 115–120. https://doi.org/10.1016/j.still.2009.02.004.
Khelifi, F., Besser, H., Ayadi, Y., et al. (2019). Evaluation of potentially toxic elements’ (PTEs) vertical distribution in sediments of Gafsa-Metlaoui mining basin (Southwestern Tunisia) using geochemical and multivariate statistical analysis approaches. Environmental Earth Sciences, 78(2), 53. https://doi.org/10.1007/s12665-019-8048-z.
Kumar, S., Chaudhuri, S., & Maiti, S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil—a review. Middle-East Journal of Science and Restoration, 13(2013), 898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801.
Kuyucak, N. (2002). Acid mine drainage prevention and control options. CIM Bulletin, 95(96), 102.
Levy, D. B., Custis, K. H., Casey, W. H., & Rock, P. A. (1997). A comparison of metal attenuation in mine residue and overburden material from an abandoned coppers mine. Applied Geochemistry, 12, 203–211. https://doi.org/10.1016/S0883-2927(96)00064-9.
Lottermoser, B. G. (2007). Mine wastes, characterization, treatment, environmental impacts (2nd ed.). New York: Springer.
Martínez-Sánchez, M. J., García-Lorenzo, M. L., Pérez-Sirvent, C., et al. (2014). Heavy metal immobilization by limestone filler in soils contaminated by mining activities: Effects on metal leaching and ecotoxicity. International Journal of Mining, Reclamation and Environment, 28(6), 414–425. https://doi.org/10.1080/17480930.2014.967919.
Meier, S., Curaqueo, G., Khan, N., et al. (2017). Effects of biochar on copper immobilization and soil microbial communities in a metal-contaminated soil. Journal of Soils and Sediments, 17(5), 1237–1250. https://doi.org/10.1007/s11368-015-1224-1.
Mlayah, A., Ferreira da Silva, E., Rocha, F., Ben Hamza, Ch., Charef, A., & Noronha, F. (2009). The Oued Melle`gue: mining activity, stream sediments and dispersion of base metals in natural environments, North-western Tunisia. Journal of Geochemical Exploration, 102, 27–36. https://doi.org/10.1016/j.gexplo.2008.11.016.
Moreno, T., Oldroyd, A., McDonald, I., & Gibbons, W. (2007). Preferential fractionation of trace metals–metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water, Air, and Soil pollution, 179, 93–105. https://doi.org/10.1007/s11270-006-9216-9.
Mukhopadhyay, S., & Maiti, S. K. (2010). Phytoremediation of metal mine waste. Applied Ecology and Environmental Research, 8(3), 207–222.
Naifar, I., Pereira, F., Zmemla, R., et al. (2018). Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes Gulf, Tunisia. Marine Pollution Bulletin, 131(2018), 53–62. https://doi.org/10.1016/j.marpolbul.2018.03.048.
Office National des Mines, Tunisie (ONM) (2005). L’activité minière en Tunisie. Site Officiel de l’ONM (www.onm.nat.tn).
Porta, J. (1986). Técnicas y Experimentos de Edafología. Barcelona: Collegi Oficial D’enginyers Agronoms de Catalunya.
Querol, X., Alastue, A., Lopez-Soler, A., & Plana, F. (2000). Levels and Chemistry of atmospheric particulates induced by a spill of heavy metals mining wastes in the Doñana area, southwest Spain. Atmospheric Environment, 34, 239–253. https://doi.org/10.1016/S1352-2310(99)00228-9.
Razo, I., Carrizales, L., Castro, J., Diaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil pollution, 152, 129–152. https://doi.org/10.1023/B:WATE.0000015350.14520.c1.
Reimann, C., Fabian, K., Schilling, J., Roberts, D., & Englmaier, P. (2015). A strong enrichment of potentially toxic elements (PTEs) in Nord-Trøndelag (central Norway) forest soil. Science of the Total Environment, 536, 130–141. https://doi.org/10.1016/j.scitotenv.2015.07.032.
Rocha, L., Rodrigues, S. M., Lopes, I., et al. (2011). The water-soluble fraction of potentially toxic elements in contaminated soils: Relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere, 84(10), 1495–1505. https://doi.org/10.1016/j.chemosphere.2011.04.035.
Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. Journal of Environmental Management, 90(2), 1106–1116. https://doi.org/10.1016/j.jenvman.2008.04.007.
Sainfeld P. (1952). Les gîtes plombo-zincifères de Tunisie: Annales des Mines et de la Géologie, Tunis, 9.
Sánchez-Donoso, R., Martín Duque, J. F., Crespo, E., & Higueras, P. (2019). Tailing’s geomorphology of the San Quintín mining site (Spain): landform catalogue, aeolian erosion and environmental implications. Environmental Earth Sciences, 78, 166. https://doi.org/10.1007/s12665-019-8148-9.
Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19, 105–116. https://doi.org/10.1016/j.mineng.2005.08.006.
Soubrand-Colin, M. (2004). Localisation, distribution et mobilité des ETM dans des sols développés sur roches basaltiques en climat tempéré (p. 133p). Limoges, France: Thèse Univ.
Spaargaren, O., & Nachtergaele, F. (1998). Topsoil characterization for sustainable land management. Food and Agriculture Organization of the United Nations. ftp://ftp.fao.org/agl/agll/docs/topsoil.pdf. Retrieved 04 February 2019.
Suh, J., Lee, H., & Choi, Y. (2016). A rapid, accurate, and efficient method to map heavy metal-contaminated soils of abandoned mine sites using converted portable XRF data and GIS. International Journal of Environmental Research and Public Health, 13(12), 1191. https://doi.org/10.3390/ijerph13121191.
Sun, Z., Xie, X., Wang, P., Hu, Y., & Cheng, H. (2018). Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Science of the Total Environment, 639(2018), 217–227. https://doi.org/10.1016/j.scitotenv.2018.05.176.
Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627. https://doi.org/10.1007/s002540050473.
Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, et al. (Eds.), Methods of soil analysis, Part 3: Chemical methods (pp. 475–490). Madison, WI: American Society of Agronomy.
Török, S. B., Lábár, J., Schmeling, M., & Van Grieken, R. E. (1998). X-ray spectrometry. Analytical Chemistry, 70(12), 495R–517R. https://doi.org/10.1021/a1960016q.
Turner, A., Chan, C. C., & Brown, M. T. (2018). Application of field-portable-XRF for the determination of trace elements in deciduous leaves from a mine-impacted region. Chemosphere, 209, 928–934. https://doi.org/10.1016/j.chemosphere.2018.06.110.
USDA. (2018). Soil Health. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/. Retrieved February 2019.
Wolinska, A., & Stepniewska, Z. (2012). Dehydrogenase activity in the soil environment. In R. A. Canuto (Ed.), Dehydrogenases (pp. 183–210). London: IntechOpen Limited. https://doi.org/10.5772/48294.
Zhang, C., Liu, G. B., Xue, S., & Song, Z. L. (2011). Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma, 161, 115–125. https://doi.org/10.1016/j.geoderma.2010.12.003.
Acknowledgments
This research was carried out with the support for IE from the Laboratoire Génie Environnement et Ecotechnologie, ENIS, Sfax University (Tunisia), for her stay in IGeA-UCLM. Projects CGL2015-67644-R (Spanish Plan Nacional de I+D+i, Ministerio de Economía y Competitividad) and 2019-GRIN-27011 (Ayudas a Grupos de Investigación UCLM) partly funded the laboratory work in Almadén, IGeA-UCLM. Neil Thompson, Ph.D. CChem MRSC, revised the English style.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Elmayel, I., Esbrí, J.M., García-Ordiales, E. et al. Biogeochemical assessment of the impact of Zn mining activity in the area of the Jebal Trozza mine, Central Tunisia. Environ Geochem Health 42, 3529–3542 (2020). https://doi.org/10.1007/s10653-020-00595-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-020-00595-2

