Skip to main content
Log in

Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The research is a maiden study aimed to assess the radioactivity in groundwater of Srinagar City using uranium and radon as proxies. In this study, 60 water samples were collected from various water sources that include bore wells, hand pumps and lakes of Srinagar City. Among them, 45 samples were taken from groundwater with depths ranging from 6 to − 126 m and the rest of the 15 samples were collected from surface sources like lakes, rivers and tap water. A gamma radiation survey of the area was carried out prior to collection of water samples, using a gamma radiation detector. A scintillation-based detector was utilized to measure radon, while as LED fluorimetry was employed to assess uranium in water samples. The average uranium concentration was found to be 2.63 μg L−1 with a maximum value of 15.28 μg L−1 which is less than the globally accepted permissible level of 30 µg L−1. 222Radon concentration varied from 0.2 to 38.5 Bq L−1 with an average value of 8.9 Bq L−1. The radon concentration in 19 groundwater samples (32% of total sites) exceeded the permissible limits of 11 Bq L−1 set by USEPA. This information could be of vital importance to health professionals in Kashmir who are researching on the incidence of lung cancers in the region given the fact that radon is the second leading cause of lung cancers after smoking worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source Thakur and Rawat 1992; Chandra et al. 2018) showing sampling sites

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M., & Katul, G. (2007). Radon measurements in well and spring water in Lebanon. Radiation Measurements, 42(2), 298–303.

    CAS  Google Scholar 

  • Akram, M., Khattak, N. U., Qureshi, A. A., Iqbal, A., Tufail, M., & Qureshi, I. E. (2004). Fission track estimation of uranium concentrations in drinking water from Azad Kashmir, Pakistan. Health Physics, 86(3), 296–302.

    CAS  Google Scholar 

  • Akram, M., Nazar, M., Ghaffar, A., Malik, F., Ali, N., Mujahid, S. A., et al. (2013). Neutron induced fission track estimation of uranium concentration and its associated health hazards in drinking water of the faisalabad industrial city. World Journal of Nuclear Science and Technology, 3(2), 30782.

    Google Scholar 

  • Al Zabadi, H., Mallah, K., & Saffarini, G. (2015). Indoor exposure assessment of radon in the elementary schools, Palestine. International Journal of Radiation Research, 13(3), 221–228.

    Google Scholar 

  • Alabdula’aly, A. I. (2014). Occurrence of radon in groundwater of Saudi Arabia. Journal of Environmental Radioactivity, 138, 186–191.

    Google Scholar 

  • Ali, N., Khan, E. U., Akhter, P., Khan, F., & Waheed, A. (2010). Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree. Radiation Protection Dosimetry, 35–39.

  • Amakom, C. M., & Jibiri, N. N. (2010). Chemical and radiological risk assessment of uranium in borehole and well waters in the Odeda Area, Ogun State, Nigeria. International Journal of the Physical Sciences.

  • Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206.

    Google Scholar 

  • Atkins, M. L., Santos, I. R., Perkins, A., & Maher, D. T. (2016). Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia). Journal of Environmental Radioactivity, 154, 83–92.

    CAS  Google Scholar 

  • Avouac, J. P., Ayoub, F., Leprince, S., Konca, O., & Helmberger, D. V. (2006). The 2005, Mw 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth and Planetary Science Letters, 249(3–4), 514–528.

    CAS  Google Scholar 

  • Ball, T. K., & Miles, J. C. H. (1993). Geological and geochemical factors affecting the radon concentration in homes in Cornwall and Devon, UK. Environmental Geochemistry and Health, 15(1), 27–36.

    CAS  Google Scholar 

  • Basavaiah, N., Appel, E., Lakshmi, B. V., Deenadayalan, K., Satyanarayana, K. V. V., Misra, S., et al. (2010). Revised magnetostratigraphy and characteristics of the fluviolacustrine sedimentation of the Kashmir basin, India, during Pliocene-Pleistocene. Journal of Geophysical Research, 115(B8), B08105.

    Google Scholar 

  • Beck, H. L. (1974). Gamma radiation from radon daughters in the atmosphere. Journal of Geophysical Research, 79(15), 2215–2221.

    CAS  Google Scholar 

  • Bhat, M. Y., & Shaban, S. (2017). District Survey Report, Government of Jammu & Kashmir. Srinagar. https://srinagar.nic.in/notice/district-survey-report-department-of-geology-and-mining/

  • Bilham, R., Bali, B. S., Bhat, M. I., & Hough, S. (2010). Historical earthquakes in Srinagar, Kashmir: Clues from the Shiva Temple at Pandrethan. In Special paper of the Geological Society of America (pp. 107–117).

  • Birke, M., Rauch, U., Lorenz, H., & Kringel, R. (2010). Distribution of uranium in German bottled and tap water. Journal of Geochemical Exploration, 107(3), 272–282.

    CAS  Google Scholar 

  • Blantz, R. C., Pelayo, J. C., Gushwa, L. C., Myers, R. R., & Evan, A. P. (1985). Functional basis for the glomerular alterations in uranyl nitrate acute renal failure. Kidney International, 28(5), 733–743.

    CAS  Google Scholar 

  • Bonotto, D. M. (2014). 222Rn, 220Rn and other dissolved gases in mineral waters of southeast Brazil. Journal of Environmental Radioactivity., 132, 21–30.

    CAS  Google Scholar 

  • Bottrell, S. H. (1993). Redistribution of uranium by physical processes during weathering and implications for radon production. Environmental Geochemistry and Health, 15(1), 21–25.

    CAS  Google Scholar 

  • Carvalho, F. P., Oliveira, J. M., Lopes, I., & Batista, A. (2007). Radionuclides from past uranium mining in rivers of Portugal. Journal of Environmental Radioactivity, 98(3), 298–314.

    CAS  Google Scholar 

  • Chandra, R., Dar, J. A., Romshoo, S. A., Rashid, I., Parvez, I. A., Mir, S. A., et al. (2018). Seismic hazard and probability assessment of Kashmir valley, northwest Himalaya, India. Natural Hazards, 93(3), 1451–1477.

    Google Scholar 

  • Chkir, N., Guendouz, A., Zouari, K., Hadj Ammar, F., & Moulla, A. S. (2009). Uranium isotopes in groundwater from the continental intercalaire aquifer in Algerian Tunisian Sahara (Northern Africa). Journal of Environmental Radioactivity.

  • Cho, J. S., Ahn, J. K., Kim, H.-C., & Lee, D. W. (2004). Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method. Journal of Environmental Radioactivity, 75(1), 105–112.

    CAS  Google Scholar 

  • Choubey, V. M., Bartarya, S. K., & Ramola, R. C. (2003). Radon in groundwater of eastern Doon valley, Outer Himalaya. Radiation Measurements, 36(1–6), 401–405.

    CAS  Google Scholar 

  • Choubey, V. M., & Ramola, R. C. (1997). Correlation between geology and radon levels in groundwater, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. Environmental Geology, 32(4), 258–262.

    CAS  Google Scholar 

  • Cinelli, G., Tositti, L., Capaccioni, B., Brattich, E., & Mostacci, D. (2015). Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environmental Geochemistry and Health, 37(2), 305–319.

    CAS  Google Scholar 

  • Dar, S. A., Bhat, S. U., Aneaus, S., & Rashid, I. (2020a). A geospatial approach for limnological characterization of Nigeen Lake, Kashmir Himalaya. Environmental Monitoring and Assessment, 192(2), 121.

    CAS  Google Scholar 

  • Dar, S. A., Bhat, S. U., Rashid, I., & Dar, S. A. (2020b). Current status of wetlands in Srinagar City: Threats, management strategies, and future perspectives. Frontiers in Environmental Science, 7, 199.

    Google Scholar 

  • Dar, I. A., Dar, M. A., & Sankar, K. (2010). Nitrate contamination in groundwater of Sopore town and its environs, Kashmir, India. Arabian Journal of Geosciences, 3(3), 267–272.

    CAS  Google Scholar 

  • Dellow, G. D., Ali, Q., Ali, S. M., Hussain, S., Khazai, B., & Nisar, A. (2007). Preliminary reconnaissance report for the Kashmir earthquake of 8 October 2005. Bulletin of the New Zealand Society for Earthquake Engineering, 40(1), 18–24.

    Google Scholar 

  • Erdogan, M., Manisa, K., & Zedef, V. (2017). Radon in spring water in the region of Seydişehir of Konya Province, Turkey. Radiation Protection Dosimetry, 177(1–2), 194–197.

    CAS  Google Scholar 

  • Fonollosa, E., Peñalver, A., Borrull, F., & Aguilar, C. (2016). Radon in spring waters in the south of Catalonia. Journal of Environmental Radioactivity, 151, 275–281.

    CAS  Google Scholar 

  • Gaware, J. J., Sahoo, B. K., Sapra, B. K., Mayya, Y. S., Physics, R., Division, A., et al. (2011). Indigenous development and networking of online radon monitors in the underground uranium mine. Radiation Protection and Environment, 34(1), 37.

    Google Scholar 

  • Gingrich, J. E. (1984). Radon as a geochemical exploration tool. Journal of Geochemical Exploration, 21(1–3), 19–39.

    CAS  Google Scholar 

  • Godoy, J. M., & Godoy, M. L. (2006). Natural radioactivity in Brazilian groundwater. Journal of Environmental Radioactivity, 85, 71–83.

    CAS  Google Scholar 

  • Gundersen, L. C. S., Schumann, R. R., Otton, J. K., Dubiel, R. F., Owen, D. E., & Dickinson, K. A. (2016). Geology of radon in the United States. In Geological Society of America Special Papers (Vol. 271, pp. 1–16). https://doi.org/10.1130/SPE271-p1

  • Jeelani, G. (2008). Hydrogeology of Hard Rock Aquifer in Kashmir Valley: Complexities and Uncertainties. In S. Ahmed, R. Jayakumar, & A. Salih (Eds.), Groundwater dynamics in hard rock aquifers: Sustainable management and optimal monitoring network design (pp. 243–248). Dordrecht: Springer.

    Google Scholar 

  • Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. Journal of Environmental Radioactivity, 173, 18–24.

    Google Scholar 

  • Jobbágy, V., Kávási, N., Somlai, J., Máté, B., & Kovács, T. (2010). Radiochemical characterization of spring waters in Balaton Upland, Hungary, estimation of radiation dose to members of public. Microchemical Journal, 124, 9–14.

    Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36.

    Google Scholar 

  • Katebe, R., Phiri, Z., & Nyirenda, E. (2017). Radon concentration levels estimation in some drinking water samples from communities around Lumwana Mine in North Western Province of Zambia. Journal of Materials Science and Engineering A, 7(1).

  • Khattak, N. U., Khan, M. A., Shah, M. T., & Javed, M. W. (2011). Radon concentration in drinking water sources of the Main Campus of the University of Peshawar and surrounding areas, Khyber Pakhtunkhwa, Pakistan. Journal of Radioanalytical and Nuclear Chemistry, 290(2), 493–505.

    CAS  Google Scholar 

  • Khuroo, M. S., Zargar, S. A., Mahajan, R., & Banday, M. A. (1992). High incidence of oesophageal and gastric cancer in Kashmir in a population with special personal and dietary habits. Gut, 33(1), 11–15.

    CAS  Google Scholar 

  • Kotlia, B. S. (1990). Large mammals from the Plio-Pleistocene of Kashmir Intermontane Basin, India, with reference to their status in Magnetic Polarity time Scale. Eiszeitalter und Gegenwart, 40, 38–52.

    Google Scholar 

  • Kumar, M., Kaushal, A., Sahoo, B. K., Sarin, A., Mehra, R., Jakhu, R., et al. (2019). Measurement of uranium and radon concentration in drinking water samples and assessment of ingestion dose to local population in Jalandhar district of Punjab, India. Indoor and Built Environment, 28(5), 611–618.

    CAS  Google Scholar 

  • Kurttio, P., Harmoinen, A., Saha, H., Salonen, L., Karpas, Z., Komulainen, H., et al. (2006). Kidney toxicity of ingested uranium from drinking water. American Journal of Kidney Diseases, 47(6), 972–982.

    CAS  Google Scholar 

  • Lawrence, E., Poeter, E., & Wanty, R. (1991). Geohydrologic, geochemical, and geologic controls on the occurrence of radon in ground water near Conifer, Colorado, USA. Journal of Hydrology, 127(1–4), 367–386.

    CAS  Google Scholar 

  • Ledoux, H., & Gold, C. (2005). An efficient natural neighbour interpolation algorithm for geoscientific modelling. Developments in spatial data handling (pp. 97–108). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Lee, M. H., Choi, G. S., Cho, Y. H., Lee, C. W., & Shin, H. S. (2001). Concentrations and activity ratios of uranium isotopes in the groundwater of the Okchun Belt in Korea. Journal of Environmental Radioactivity, 57, 105–116.

    CAS  Google Scholar 

  • Loomis, D. P., Watson, J. E., & Crawford-Brown, D. J. (1988). Predicting the occurrence of radon-222 in groundwater supplies. Environmental Geochemistry and Health, 10(2), 41–50.

    CAS  Google Scholar 

  • Ng, K.-H., Abdullah, B. J. J., & Sivafingam, S. (1999). Medical radiation exposures for diagnostic radiology in Malaysia. Health Physics, 77(1), 33–36.

    CAS  Google Scholar 

  • Nikolopoulos, D., & Louizi, A. (2008). Study of indoor radon and radon in drinking water in Greece and Cyprus: Implications to exposure and dose. Radiation Measurements, 43(7), 1305–1314.

    CAS  Google Scholar 

  • Nriagu, J., Nam, D. H., Ayanwola, T. A., Dinh, H., Erdenechimeg, E., Ochir, C., & Bolormaa, T. A. (2012). High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Science of the Total Environment.

  • Otton, J. K. (1992). The geology of radon. Washington: Government Printing Office.

    Google Scholar 

  • Panigrahy, S., Singh, T. S., Patel, J. G., Romshoo, S. A., Qadri, T., Rashid, I., Muslim, M. (2010). National Wetland Atlas: Jammu and Kashmir, SAC/RESA/AFEG/NWIA/ATLAS/16/2010, Space Applications Centre, ISRO, Ahmedabad, India, 176p. https://vedas.sac.gov.in/vedas/downloads/atlas/Wetlands/NWIA_Jammu_and_Kashmir_Atlas.pdf

  • Porcelli, D. (2003). The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry, 52(1), 317–361.

    CAS  Google Scholar 

  • Przylibski, T. A., Mamont-Cieśla, K., Kusyk, M., Dorda, J., & Kozłowska, B. (2004). Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). Journal of Environmental Radioactivity, 75(2), 193–209.

    CAS  Google Scholar 

  • Qurieshi, M. A., Khan, S. M. S., Masoodi, M. A., Qurieshi, U., Ain, Q., Jan, Y., et al. (2016). Epidemiology of cancers in Kashmir, India: An analysis of hospital data. Advances in Preventive Medicine, 2016, 1–6.

    Google Scholar 

  • Qurieshi, M. A., Masoodi, M. A., Kadla, S. A., Ahmad, S. Z., & Gangadharan, P. (2011). Gastric cancer in Kashmir. Asian Pacific Journal of Cancer Prevention.

  • Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2017). Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica, 62, 84–96.

    CAS  Google Scholar 

  • Rather, M. I., Rashid, I., Shahi, N., Murtaza, K. O., Hassan, K., Yousuf, A. R., et al. (2016). Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environmental Monitoring and Assessment, 188(3), 185.

    Google Scholar 

  • Ravikumar, P., & Somashekar, R. K. (2014). Determination of the radiation dose due to radon ingestion and inhalation. International Journal of Environmental Science and Technology, 11(2).

  • Romshoo, S. A., Dar, R. A., Murtaza, K. O., Rashid, I., & Dar, F. A. (2017). Hydrochemical characterization and pollution assessment of groundwater in Jammu Siwaliks, India. Environmental Monitoring and Assessment, 189(3), 122.

    Google Scholar 

  • Rossiter, H. M. A., Owusu, P. A., Awuah, E., MacDonald, A. M., & Schäfer, A. I. (2010). Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment. Science of the Total Environment, 408(11), 2378–2386.

    CAS  Google Scholar 

  • Saini, K., Singh, P., & Bajwa, B. S. (2016). Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India. Applied Radiation and Isotopes, 118, 196–202.

    CAS  Google Scholar 

  • Salih, I., Bäckström, M., Karlsson, S., Lund, E., & Pettersson, H. B. L. (2004). Impact of fluoride and other aquatic parameters on radon concentration in natural waters. Applied Radiation and Isotopes.

  • Sana, H., & Nath, S. K. (2017). Seismic source zoning and maximum credible earthquake prognosis of the Greater Kashmir Territory, NW Himalaya. Journal of Seismology, 21(2), 411–424.

    Google Scholar 

  • Sannappa, J., Suresh, S., Rangaswamy, D. R., & Srinivasa, E. (2019). Estimation of ambient gamma radiation dose and drinking water radon concentration in coastal taluks of Uttara Kannada district, Karnataka. Journal of Radioanalytical and Nuclear Chemistry.

  • Sarah, S., Jeelani, G., & Ahmed, S. (2011). Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. Journal of Earth System Science, 120(3), 399–411.

    CAS  Google Scholar 

  • Shah, A. A. (2013). Earthquake geology of Kashmir Basin and its implications for future large earthquakes. International Journal of Earth Sciences, 102(7), 1957–1966.

    Google Scholar 

  • Sharma, T., Sharma, A., Kaur, I., Mahajan, R. K., Litoria, P. K., Sahoo, S. K., et al. (2019). Uranium distribution in groundwater and assessment of age dependent radiation dose in Amritsar, Gurdaspur and Pathankot districts of Punjab, India. Chemosphere, 219, 607–616.

    CAS  Google Scholar 

  • Sibson, R. (1981). A brief description of natural neighbour interpolation. In Interpreting multivariate data.

  • Singh, P., Singh, P., Sahoo, B. K., & Bajwa, B. S. (2015). A study on uranium and radon levels in drinking water sources of a mineralized zone of Himachal Pradesh, India. Journal of Radioanalytical and Nuclear Chemistry, 309(2), 541–549.

    Google Scholar 

  • Skeppström, K. (2007). Uranium and radon in groundwater. European Water, 17(18), 51–62.

    Google Scholar 

  • Skeppström, K., & Olofsson, B. (2006). A prediction method for radon in groundwater using GIS and multivariate statistics. Science of the Total Environment, 367(2–3), 666–680.

    Google Scholar 

  • Sparovek, R. B. M., Fleckenstein, J., & Schnug, E. (2001). Issues of uranium and radioactivity in natural mineral waters. Landbauforschung Volkenrode.

  • Tanner, A. B. (1978). Natural radiation. In Radiation and health (Vol. 1). Abingdon: Taylor & Francis.

  • Tayyeb, Z. A., Kinsara, A. R., & Farid, S. M. (1998). A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects. Journal of Environmental Radioactivity, 38(1), 97–104.

    CAS  Google Scholar 

  • Thakur, V., & Rawat, B. (1992). Geological map of the Western Himalaya. The Printing Group of Survey of India (Vol. 101). The Surveyor General of India.

  • Tolera, M. B., Choi, H., Chang, S. W., & Chung, I.-M. (2020). Groundwater quality evaluation for different uses in the lower Ketar Watershed, Ethiopia. Environmental Geochemistry and Health, 1–20.

  • Tsoulfanidis, N., & Landsberger, S. (2015). Measurement detection of radiation (4th ed.). London: CRC Press.

    Google Scholar 

  • Vesterbacka, P., Mäkeläinen, I., & Arvela, H. (2005). Natural radioactivity in drinking water in private wells in Finland. Radiation Protection Dosimetry.

  • Vesterbacka, P., Pettersson, H., Hanste, U. M., Jakobson, E., Kolstad, T., Roos, P., et al. (2010). Intercomparison of Rn-222 determination from groundwater. Applied Radiation and Isotopes, 68(1), 214–218.

    CAS  Google Scholar 

  • Villalba, L., Colmenero Sujo, L., Montero Cabrera, M. E., Cano Jiménez, A., Rentería Villalobos, M., Delgado Mendoza, C. J., et al. (2005). Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico. Journal of Environmental Radioactivity, 80(2), 139–151.

    CAS  Google Scholar 

  • Voronov, A. N. (2004). Radon-rich waters in Russia. Environmental Geology, 46(5).

  • WHO. (2009). WHO Handbook on Indoor Radon. International Journal of Environmental Studies.

  • World Health Organization. (2010). Indoor Radon a Public Health Perspective. International Journal of Environmental Studies.

  • WHO. WHO guidelines for drinking-water quality-4th edition., WHO chronicle (2011).

  • Yalim, H. A., Akkurt, I., Ozdemir, F. B., Unal, R., Sandikcioglu, A., & Akkurt, A. (2007). The measurement of radon and radium concentrations in well water in the Afyonkarahisar area of Turkey. Indoor and Built Environment, 16(1), 77–81.

    CAS  Google Scholar 

  • Zhuo, W., Iida, T., & Yang, X. (2001). Occurrence of 222Rn, 226Ra, 228Ra and U in groundwater in Fujian Province, China. Journal of Environmental Radioactivity, 53, 111–120.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), Trombay, Mumbai, India [Grant number: 36(4)/14/48/2015-BRNS]. The authors thank the three anonymous reviewers for their comments on the earlier version of the manuscript that greatly improved the structure and content of this manuscript. The authors express gratitude to the Groundwater Wing of state Public Health Engineering (PHE) department for providing the necessary data pertaining to the location of various wells in the Srinagar City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Simnani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, S., Simnani, S., Sahoo, B.K. et al. Dose estimation of radioactivity in groundwater of Srinagar City, Northwest Himalaya, employing fluorimetric and scintillation techniques. Environ Geochem Health 43, 837–854 (2021). https://doi.org/10.1007/s10653-020-00576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00576-5

Keywords

Navigation