Chromium, manganese, nickel, and cobalt mobility and bioavailability from mafic-to-ultramafic mine spoil weathering in western Massachusetts, USA

Abstract

Fragmented ultramafic bodies in New England were important mineral resources until the early twentieth century, yet few studies have addressed their potential to release trace metals to terrestrial and aquatic environments. Here, we evaluate the release of four trace metals (Cr, Co, Mn, and Ni) from a historic serpentine–talc “soapstone” quarry in Blandford, MA, USA. Soil pits, sediment and rock samples, and stream water samples were collected from upslope undisturbed areas, within the mine spoils and mine face, and downslope of the mine. In order to provide a bottom-up approach for understanding metal release, careful petrographic analysis, electron-dispersive spectroscopy, and wavelength-dispersive spectroscopy were employed to provide first-order insight into the mineralogy of the deposit and a determination of potential metal-bearing phases. Trace metals were primarily observed in ultramafic sheet silicates, primary Fe-oxides, and interstitial weathering-related sulfates. Bulk rock concentrations were Cr (1550 mg kg−1), Co (230 mg kg−1), Mn (1100 mg kg−1), and Ni (1960 mg kg1); Cr, Co, and Ni were elevated relative to the surrounding country rock. However, soils and sediments total concentrations were comparable to background soil concentrations: Cr (119 mg kg−1), Co (73 mg kg−1), Mn (894 mg kg−1), and Ni (65 mg kg−1). Moreover, < 0.5% of the total concentrations were bioavailable (0.1 M ammonium acetate extraction), implying that metals are present as insoluble forms. However, ~ 20% of the total Cr, Mn, Ni, and Co concentrations were strong acid extractable, suggesting mobilization over the coming decades. Stream water concentrations of Mn and Cr were < 50 µg L−1, below concentrations outlined by USEPA drinking water standards, and WHO water guidelines for Ni. These results suggest that transport of Cr, Mn, Ni, and Co from the serpentine–talc as dissolved compounds or sediments is limited by retention within silicate and oxides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adriano, D. C. (2001). Arsenic. Springer, New York, NY: In Trace elements in terrestrial environments.

    Google Scholar 

  2. Agnieszka, J., & Barbara, G. (2012). Chromium, nickel and vanadium mobility in soils derived from fluvioglacial sands. Journal of Hazardous Materials, 237, 315–322.

    Google Scholar 

  3. Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of environmental contamination and toxicology (pp. 53–91). New York, NY: Springer.

    Google Scholar 

  4. Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: A review. Environmental Chemical Letter, 6, 189–213.

    CAS  Google Scholar 

  5. Bradley, D. W. (1983). Tectonics of the Acadian orogeny in New England and adjacent Canada. Journal of Geology, 91, 381–400.

    Google Scholar 

  6. Butt, C. M. B., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123–128.

    CAS  Google Scholar 

  7. Cenni, E., Bussotti, F., & Galeotti, L. (1998). The decline of a Pinus nigra Arn reforestation stand on a limestone substrate: The role of nutritional factors examined by means of foliar diagnosis. Annales des sciences forestières, 55(5), 567–576.

    Google Scholar 

  8. Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27(6), 1294–1300.

    CAS  Google Scholar 

  9. Chute, N. E. (1969). The talc, soapstone, and asbestos deposits of Massachusetts. USGS Open File Report, 1–48.

  10. Da Silva, J. F., & Williams, R. J. P. (2001). The biological chemistry of the elements: the inorganic chemistry of life. Oxford: Oxford University Press.

    Google Scholar 

  11. de Varennes, A., Carneiro, J. P., & Goss, M. J. (2001). Characterization of manganese toxicity in two species of annual medics. Journal of Plant Nutrition, 24(12), 1947–1955.

    Google Scholar 

  12. Dinelli, E., & Tateo, F. (2001). Sheet silicates as effective carriers of heavy metals in the ophiolitic mine area of Vigonzano (northern Italy). Mineralogical Magazine, 65(1), 121–132.

    CAS  Google Scholar 

  13. Emerson, B. K. (1898). Geology of Old Hampshire County, Massachusetts, comprising Franklin, Hampshire, and Hampden Counties (p. 29). Geological Survey: U.S.

    Google Scholar 

  14. Feng, X. H., Zhai, L. M., Tan, W. F., Zhao, W., Liu, F., & He, J. Z. (2006). The controlling effect of pH on oxidation of Cr (III) by manganese oxide minerals. Journal of Colloid and Interface Science, 298(1), 258–266.

    CAS  Google Scholar 

  15. Gasser, U. G., Juchler, S. J., Sticher, H., & Hobson, W. A. (1995). The fate of chromium and nickel in subalpine soils derived from serpentinite. Canadian Journal of Soil Science, 75(2), 187–195.

    CAS  Google Scholar 

  16. Gee, G. W., & Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters 1. Soil Science Society of America Journal, 43(5), 1004–1007.

    Google Scholar 

  17. Haynes, E. N., Sucharew, H., Kuhnell, P., Alden, J., Barnas, M., Wright, R. O., et al. (2015). Manganese exposure and neurocognitive outcomes in rural school-age children: The communities actively researching exposure study (Ohio, USA). Environmental Health Perspectives, 123(10), 1066–1071.

    CAS  Google Scholar 

  18. Hitchcock, E. (1833). Report on the geology, mineralogy, botany, and zoology of Massachusetts: Amherst, Massachusetts.

  19. Izbicki, J. A., Ball, J. W., Bullen, T. D., & Sutley, S. J. (2008). Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Applied Geochemistry, 23(5), 1325–1352.

    CAS  Google Scholar 

  20. Jordan, J., Cernak, R. S., & Richardson, J. B. (2019). Exploring the role of soil geochemistry on Mn and Ca uptake on 75-year-old mine spoils in western Massachusetts, USA. Environmental Geochemistry and Health, 1–13.

  21. Kabata-Pendias, A. (2015). Trace elements in abiotic and biotic environments. CRC Press.

  22. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Google Scholar 

  23. Leyssens, L., Vinck, B., Van Der Straeten, C., Wuyts, F., & Maes, L. (2017). Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology, 387, 43–56.

    CAS  Google Scholar 

  24. Li, H. F., Gray, C., Mico, C., Zhao, F. J., & McGrath, S. P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75(7), 979–986.

    CAS  Google Scholar 

  25. Ma, Y., & Hooda, P. S. (2010). Chromium, nickel and cobalt. Trace Elements in Soils, 13, 461–480.

    Google Scholar 

  26. Mackey, E. A., Christopher, S. J., Lindstrom, R. M., Long, S. E., Marlow, A. F., Murphy, K. E., et al. (2711a). Certification of three NIST renewal soil standard reference materials for element content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. NIST Special Publication, 260(172), 1–39.

    Google Scholar 

  27. Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97–126.

    Google Scholar 

  28. Oze, C., Bird, D. K., & Fendorf, S. (2007). Genesis of hexavalent chromium from natural sources in soil and groundwater. Proceedings of the National Academy of Sciences, 104(16), 6544–6549.

    CAS  Google Scholar 

  29. Proenza, J. A., Lewis, J. F., Galí, S., Tauler, E., Labrador, M., Melgarejo, J. C., et al. (2008). Garnierite mineralization from Falcondo Ni-laterite deposit (Dominican Republic). Revista de la Sociedad Española de mineralogía, 9, 197–198.

    Google Scholar 

  30. Rabenhorst, M. C., Foss, J. E., & Fanning, D. S. (1982). Genesis of Maryland soils formed from serpentinite. Soil Science Society of America Journal, 46(3), 607–616.

    CAS  Google Scholar 

  31. Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Martins, E. S., & Becquer, T. (2013). Potentially toxic metals in ultramafic mining materials: Identification of the main bearing and reactive phases. Geoderma, 192, 111–119.

    CAS  Google Scholar 

  32. Ratié, G., Jouvin, D., Garnier, J., Rouxel, O., Miska, S., Guimarães, E., et al. (2015). Nickel isotope fractionation during tropical weathering of ultramafic rocks. Chemical Geology, 402, 68–76.

    Google Scholar 

  33. Robinson, B. H., Brooks, R. R., Kirkman, J. H., Gregg, P. E. H., & Gremigni, P. (1996). Plant-available elements in soils and their influence on the vegetation over ultramafic (“serpentine”) rocks in New Zealand. Journal of the Royal Society of New Zealand, 26(4), 457–468.

    Google Scholar 

  34. Santisteban, J., Mediavilla, R., López-Pamo, E., Dabrio, C., Zapata, M., García, M., et al. (2004). Loss on ignition: A qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32(3), 287–299.

    Google Scholar 

  35. Schwertmann, U., & Latham, M. (1986). Properties of iron oxides in some New Caledonian oxisols. Geoderma, 39(2), 105–123.

    CAS  Google Scholar 

  36. Scott, D. T., McKnight, D. M., Voelker, B. M., & Hrncir, D. C. (2002). Redox processes controlling manganese fate and transport in a mountain stream. Environmental Science & Technology, 36(3), 453–459.

    CAS  Google Scholar 

  37. Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254.

    CAS  Google Scholar 

  38. Tracy, R. J., Robinson, P., & Wolff, R. A. (1984). Metamorphosed ultramafic rocks in the Bronson Hill Anticlinorium, Central Massachusetts. American Journal of Science, 284, 530–558.

    CAS  Google Scholar 

  39. U.S. Census Bureau 2019. Quick Facts: United States. https://www.census.gov/quickfacts/fact/table/US/ PST045218. Retrieved October 2, 2019.

  40. USEPA. 1996. “Method 3050B: Acid digestion of sediments, sludges, and soils,” Revision 2. Washington, DC.

  41. USEPA United States Environmental Protection Agency Secondary Drinking Water Regulations: Guidance for Nuisance Chemicals. https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals. Retrieved Accessed July 9, 2019.

  42. USEPA United States Environmental Protection Agency National Primary Drinking Water Regulations: Guidance for Nuisance Chemicals. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations. Retrieved July 9, 2019.

  43. Wei, F., Feng, Y., Luo, P., Zhang, Y., Huang, X., Zeng, X., et al. (2019). Weathering of ophiolite remnant and formation of Ni Laterite in a strong uplifted Tectonic Region (Yuanjiang, Southwest China). Minerals, 9(1), 51.

    Google Scholar 

  44. Wilde, F.D., & Radtke, D.B. (eds.) (1998). Handbooks for water-resources investigations: National field manual for the collection of water-quality data. US Geological Survey.

  45. World Health Organization. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: Licence: CC BY-NC-SA 3.0 IGO.

  46. Zen, E.-A., Goldsmith, R., Ratcliffe, N. M., Robinson, P., Stanley, R. S., Hatch, N. L., Jr., Shride, A. F., Weed, E. G. A., & Wones, D. R. (1983). Bedrock geologic map of Massachusetts: U.S. Geological Survey, Reston, VA, scale 1: 250,000.

Download references

Acknowledgements

We thank the Springfield City Water and Sewer Commission for granting permission to study the former Osborne Mine. We are grateful to Lawrence Bull and Kenneth Gliesman for their guidance and knowledge of the mine and its minerals. This research was supported by funding to Dr. Justin Richardson from the University of Massachusetts Amherst.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Justin B. Richardson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2187 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mistikawy, J.A., Mackowiak, T.J., Butler, M.J. et al. Chromium, manganese, nickel, and cobalt mobility and bioavailability from mafic-to-ultramafic mine spoil weathering in western Massachusetts, USA. Environ Geochem Health 42, 3263–3279 (2020). https://doi.org/10.1007/s10653-020-00566-7

Download citation

Keywords

  • Biogeochemistry
  • Serpentine soils
  • Ecotoxicology
  • Mine tailings
  • Trace metals