Skip to main content

Advertisement

Log in

Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mercury (Hg) exchange at the plant leaf–atmosphere interface is an important issue when considering vegetation as a sink or source of this global pollutant. The aim of the study described here was to clarify this process by studying Hg exchange under laboratory conditions with a plant model, namely Epipremnum aureum. The desorption and absorption processes were studied under similar conditions in natural daylight. Hg exchange was measured at the foliar surface, and micrometeorological parameters and stomatal conductance were assessed. The results of the Hg exchange study showed different rhythms for the two processes, i.e. desorption (14–196 ng m−2 day−1) was slower than absorption (170–1341 ng m−2 day−1). The daily cycle was more complex in the desorption process, with a maximum when stomatal conductance was high but also with high values during nocturnal hours and a trend to absorption in the mornings. The daily absorption cycles were relatively simple, with values that coincided with positive stomatal conductance values and null values during nocturnal hours. The main factors involved in desorption were stomatal conductance and temperature, but other factors may need to be considered. The absorption process only involved total gaseous Hg, stomatal conductance and relative humidity. A net balance of the two experiments provided data on the amount of Hg transferred per unit leaf area (167 ng m−2 for desorption and 9213 ng m−2 for absorption), which implies total amounts of 23 ng of Hg desorbed and 1280 ng absorbed during the whole experiment. Finally, the reversible/non-reversible nature of the Hg exchange process must be reconsidered bearing in mind that Hg within the leaf can be emitted if changes in ambient conditions are appropriate to favour this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahammad, S. J., Sumithra, S., & Senthilkumar, P. (2018). Mercury uptake and translocation by indigenous plants. Rasayan Journal of Chemistry, 11, 1–12.

    CAS  Google Scholar 

  • Amorós, J., Esbrí, J. M., García-Navarro, F., Pérez-de-los-Reyes, C., Bravo, S., Villaseñor, B., et al. (2014). Variations in mercury and other trace elements contents in soil and in vine leaves from the Almadén Hg-mining district. Journal of Soils and Sediments, 14(4), 773–777.

    Google Scholar 

  • Assad, M., Parelle, J., Cazaux, D., Gimbert, F., Chalot, M., & Tatin-Froux, F. (2016). Mercury uptake into poplar leaves. Chemosphere, 146, 1–7.

    CAS  Google Scholar 

  • Barquero, J. I., Rojas, S., Esbrí, J. M., García-Noguero, E. M., & Higueras, P. (2019). Factors influencing mercury uptake by leaves of stone pine (Pinus pinea L.) in Almadén (Central Spain). Environmental Science and Pollution Research, 26(4), 3129–3137.

    CAS  Google Scholar 

  • Bash, J. O., & Miller, D. R. (2007). Growing season total gaseous mercury (TGM) flux measurements over an Acer rubrum L. stand. Atmospheric Environment, 43, 5953–5961.

    Google Scholar 

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47, 693–794.

    CAS  Google Scholar 

  • Beer, C., Ciais, P., Reichstein, M., Baldocchi, D., Law, B. E., Papale, D., et al. (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, 1–13.

    Google Scholar 

  • Buckley, T. N., & Mott, K. A. (2002). Stomatal water relations and the control of hydraulic supply and demand. Progress in Botany, 63, 309–325.

    Google Scholar 

  • Campos, J. A., Esbrí, J. M., Madrid, M. M., Naharro, R., Peco, J., García-Noguero, E. M., et al. (2018). Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere, 201, 799–806.

    CAS  Google Scholar 

  • Carrasco-Gil, S., Siebner, H., Leduc, D. L., Webb, S. M., Millán, R., Andrews, J. C., et al. (2013). Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environmental Science and Technology, 47(7), 3082–3090.

    CAS  Google Scholar 

  • Converse, A. D., Riscassi, A. L., & Scanlon, T. M. (2010). Seasonal variability in gaseous mercury fluxes measured in a high-elevation meadow. Atmospheric Environment, 44, 2176–2185.

    CAS  Google Scholar 

  • Cronan, C. S. (2018). Ecosystem biogeochemistry. Element cycling in the forest landscape. Bern: Springer International Publishing AG. ISBN 978-3-319-66443-9.

    Google Scholar 

  • Demers, J. D., Blum, J. D., & Zak, D. R. (2013). Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochemical Cycles, 27, 222–238.

    CAS  Google Scholar 

  • Eckley, C. S., Tate, M. T., Lin, C., Gustin, M., Dent, S., Eagles-Smith, C., et al. (2016). Surface-air mercury fluxes across western North America: A synthesis of spatial trends and controlling variables. Science of the Total Environment, 568, 651–665.

    CAS  Google Scholar 

  • Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37, 1613–1622.

    CAS  Google Scholar 

  • Esbrí, J. M., Cacovean, H., & Higueras, P. (2018). Usage proposal of a common urban decorative tree (Salix alba L.) to monitor the dispersion of gaseous mercury: A case study from Turda (Romania). Chemosphere, 193, 74–81.

    Google Scholar 

  • Esbrí, J. M., Martínez-Coronado, A., & Higueras, P. L. (2016). Temporal variations in gaseous elemental mercury concentrations at a contaminated site: Main factors affecting nocturnal maxima in daily cycles. Atmospheric Environment, 125, 8–14.

    Google Scholar 

  • Fernández-Patier, R., & Ramos-Díaz, M. C. (2011). Informe del Ejercicio de lntercomparación de Mercurio Gaseoso total en aire ambiente “INSITU” (año 2011). Ined. Repport, Instituto de Salud Carlos III, Centro Nacional de Sanidad Ambiental, Área de Contaminación Atmosférica. Ministerio de Economía y Competitividad, España.

  • Franks, P. J., Buckley, T. N., Shope, J. C., & Mott, K. A. (2001). Guard cell volume and pressure measured concurrently by confocal microscopy and the cell pressure probe. Plant Physiology, 125, 1577–1584.

    CAS  Google Scholar 

  • Fu, X., Feng, X., Zhu, W., Rothenberg, S., Yao, H., & Zhang, H. (2010). Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern china. Environmental Pollution, 158(6), 2324–2333.

    CAS  Google Scholar 

  • Gong, J. M., Lee, D. A., & Schroeder, J. I. (2003). Long-distance root-to shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences USA, 100, 10118–10123.

    CAS  Google Scholar 

  • Higueras, P., Amorós, J. A., Esbrí, J. M., García-Navarro, F. J., Pérez-de-los-Reyes, C., & Moreno, G. (2012). Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. Journal of Geochemical Exploration, 123, 143–151.

    CAS  Google Scholar 

  • Higueras, P. L., Amorós, J. Á., Esbrí, J. M., Perez de los Reyes, C., López-Berdonces, M. A., & García-Navarro, F. J. (2016). Mercury transfer from soil to olive trees. A comparison of three different contaminated sites. Environmental Science and Pollution Research, 23(7), 6055–6061.

    CAS  Google Scholar 

  • ISO/IEC Guide 431. (1997). Proficiency testing by interlaboratory comparisons part 1: Development and operation of laboratory proficiency testing. Retrieved November 20, 2018 from http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27216.

  • Kothny, E. L. (1973). The three-phase equilibrium of mercury in nature. In E. L. Kothny (Ed.), Trace elements in the environment (pp. 48–80). Washington, DC: American Chemical Society.

    Google Scholar 

  • Kowalski, A., & Frankowski, M. (2016). Seasonal variability of mercury concentrations in soil, buds and leaves of Tilia platyphylos and Acer platanoides in central Poland. Environmental Science and Pollution Research, 23, 9614–9624.

    CAS  Google Scholar 

  • Leonard, T. L., Taylor, G. E., Jr., Gustin, M. S., & Fernandez, G. C. J. (1998). Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry, 17(10), 2063–2071.

    CAS  Google Scholar 

  • Liu, Z., Wang, L., Xu, J., Ding, S., Feng, X., & Xiao, H. (2017). Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecological Engineering, 106, 273–278.

    Google Scholar 

  • Lombardozzi, D. L., Zeppel, M. J. B., Fisher, R. A., & Tawfik, A. (2017). Representing nighttime and minimum conductance in CLM4.5: Global hydrology and carbon sensitivity analysis using observational constraints. Geoscientific Model Development, 10, 321–331.

    CAS  Google Scholar 

  • Luo, Y., Duan, L., Driscoll, C. T., Xu, G., Shao, M., Taylor, M., et al. (2016). Foliage/atmosphere exchange of mercury in a subtropical coniferous forest in South China. Journal of Geophysical Research-Biogeosciences, 121, 2006–2016.

    CAS  Google Scholar 

  • Mencuccini, M., Mambelli, S., & Comstock, J. (2000). Stomatal responsiveness to leaf water status in common bean (Phaseolus vulgaris L.) is a function of time of day. Plant, Cell and Environment, 23, 1109–1118.

    Google Scholar 

  • Millhollen, A. G., Gustin, M. S., & Obrist, D. (2006). Foliar mercury accumulation and exchange for three tree species. Environmental Science and Technology, 40(19), 6001–6006.

    CAS  Google Scholar 

  • Molina, J. A., Oyarzun, R., Esbrí, J. M., & Higueras, P. (2006). Mercury accumulation in soils and plants in the Almadén mining district, Spain: One of the most contaminated sites on earth. Environmental Geochemistry and Health, 28, 487–498.

    CAS  Google Scholar 

  • Naharro, R., Esbrí, J. M., Amorós, J. A., García-Navarro, F. J., & Higueras, P. (2018). Assessment of mercury uptake routes at the soil–plant–atmosphere interface. Geochemistry, Exploration and Environment, A, 19(2), 146–154.

    Google Scholar 

  • Obrist, D., Johnson, D. W., & Edmonds, R. L. (2012). Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests. Journal of Plant Nutrition and Soil Science, 175, 68.

    CAS  Google Scholar 

  • Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., & Selin, N. E. (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47, 116–140.

    Google Scholar 

  • Reich, P. B., Walters, M. B., & Elsworth, D. S. (1992). Leaf life span in relation to leaf, plant and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365–392.

    Google Scholar 

  • Rutter, A. P., Schauer, J. J., Shafer, M. M., Creswell, J. E., Olson, M. R., Robinson, M., et al. (2011). Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment. Atmospheric Environment, 45(4), 848–855.

    CAS  Google Scholar 

  • Segev, R., Nannapaneni, R., Sindurakar, P., Kim, H., Read, H., & Lijek, S. (2015). The effect of the stomatal index on the net rate of photosynthesis in the leaves of Spinacia oleracea, Vinca minor, Rhododendron spp, Epipremnum aureum, and Hederaspp. Journal of Emerging Investigators. Retrieved November 20, 2018 from https://www.emerginginvestigators.org/articles/the-effect-of-the-stomatal-index-on-the-net-rate-of-photosynthesis-in-the-leaves-of-i-spinacia-oleracea-i-i-vinca-minor-i-i-rhododendron-spp-i-i-epipremnum-aureum-i-and-i-hedera-spp-i.

  • Si, L., & Ariya, P. A. (2018). Recent advances in atmospheric chemistry of mercury. Atmosphere, 9(2), 76.

    Google Scholar 

  • Sommar, J., Zhu, W., Lin, C. -J., & Feng, X. (2012). Field approaches to measure Hg exchange between natural surfaces and the atmosphere—A review. Critical Reviews in Environmental Science and Technology, 43(15), 1657–1739.

    Google Scholar 

  • Stamenkovic, J., & Gustin, M. S. (2009). Nonstomatal versus stomatal uptake of atmospheric mercury. Environmental Science and Technology, 43, 1367–1372.

    CAS  Google Scholar 

  • Wang, X., Bao, Z., Lin, C., Yuan, W., & Feng, X. (2016). Assessment of global mercury deposition through litterfall. Environmental Science and Technology, 50(16), 8548–8557.

    CAS  Google Scholar 

  • Witt, E. L., Kolka, R. K., Nater, E. A., & Wickman, T. R. (2009). Forest fire effects on mercury deposition in the boreal forest. Environmental Science and Technology, 43(6), 1776–1782.

    CAS  Google Scholar 

  • Yang, Y., Yanaia, R. D., Montesdeoca, M., & Driscoll, C. T. (2017). Measuring mercury in wood: Challenging but important. International Journal of Environment and Analytical Chemistry, 97, 456.

    CAS  Google Scholar 

  • Yu, Q., Luo, Y., Wang, S., Wang, Z., Hao, J., & Duan, L. (2018). Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China. Atmospheric Chemistry and Physics, 18, 495–509.

    CAS  Google Scholar 

  • Zhang, W. H., & Tyerman, S. D. (1999). Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiology, 120(3), 849–857.

    CAS  Google Scholar 

  • Zheng, S. A., Wu, Z., Chen, C., Liang, J., Huang, H., & Zheng, X. (2017). Evaluation of leafy vegetables as bioindicators of gaseous mercury pollution in sewage-irrigated areas. Environmental Science and Pollution Research, 25, 413–421.

    Google Scholar 

  • Zheng, W., Obrist, D., Weis, D., & Bergquist, B. A. (2016). Mercury isotope compositions across North American forests. Global Biogeochemical Cycles, 30, 1475–1492.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Economy and Competitiveness (Projects CTM2012-33918 and CGL2015-67644-R). The diffusion porometer was provided by the ‘Departamento de Suelo, Planta y Calidad Ambiental’, Spanish Council for Science (CSIC). Dr. Neil Thompson (PhD CChem MRSC) revised the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Esbrí.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naharro, R., Esbrí, J.M., Amorós, J.A. et al. Experimental assessment of the daily exchange of atmospheric mercury in Epipremnum aureum. Environ Geochem Health 42, 3185–3198 (2020). https://doi.org/10.1007/s10653-020-00557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00557-8

Keywords

Navigation