Skip to main content

Advertisement

Log in

Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater resources in arid and semi-arid regions are the most and sometimes the only water resource used for agricultural, industrial, and urban water supply. Irregular and immense application of nitrogen fertilizers in the lands under cultivation and nitrate leakage from livestock farming have affected the groundwater quality. In such areas, nitrate is one of the main pollutants in the groundwater. In this study, the temporal and spatial trend of nitrate contamination in 31 wells in Fasarud Plain, southern Iran, from April 2017 to March 2018 were assessed. To survey the geochemical quality of the plain, a geographic information system to expand geographic location maps and spatial distribution maps of nitrate concentration and nitrate pollution index (NPI) was applied. Nitrate concentrations ranged between 2.43 and 96 mg L−1. Results indicated that nitrate temporal trend was increased significantly in most of the wells, and the spatial trend of area percentage of nitrate class 3 (not permissible limit of more than 50 mg L−1) was positive. The greatest quantities of this variable in groundwater samples detected in northern, western, and eastern areas of the plain have a direct relation with the fertilization of agricultural lands. Generally, by ending the irrigation season, nitrate concentration and NPI reduced temporally in the samples and the percentage area of nitrate class 3 decreased gradually, again beginning the agricultural season, the NPI, nitrate concentration, and percentage area of nitrate class 3 began to increase. Overall, the change of nitrate concentration and distribution of agricultural regions have illustrated that nitrate originated from nitrogenous inorganic fertilizers applied within irrigation periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou Zaki, N., Torabi Haghighi, A., Rossi, P. M., Tourian, M. J., & Kløve, B. (2019). Monitoring groundwater storage depletion using Gravity Recovery and Climate Experiment (GRACE) data in Bakhtegan Catchment Iran. Water, 11(7), 1–13.

    Google Scholar 

  • Akale, A. T., Moges, M. A., Dagnew, D. C., Tilahun, S. A., & Steenhuis, T. S. (2018). Assessment of nitrate in wells and springs in the North Central Ethiopian Highlands. Water, 10, 476. https://doi.org/10.3390/w10040476.

    Article  CAS  Google Scholar 

  • Akhavan, S., Zare Abyaneh, H., & Bayat Varkeshi, M. (2014). A systematic review on nitrate concentration in water resources of Iran. Iranian Journal of Health & Environment, 7(2), 205–228.

    Google Scholar 

  • Alighardashi, A., & Mehrani, M. J. (2017). Survey and zoning of nitrate-contaminated groundwater in Iran. Journal of Materials and Environmental Sciences, 8(10), 2785–2794.

    CAS  Google Scholar 

  • Almasi, A., Shokri, R., Momenzadeh, R., Rezaei, S., Jamshidi, A., & Yazdizadeh, R. (2016). Distribution of groundwater nitrate in Dehloran, Iran: A case study using GIS. Journal of Advances in Environmental Health Research, 4(3), 155–160.

    CAS  Google Scholar 

  • Ameur, M., Hamzaoui-Azaza, F., & Gueddari, M. (2016). Nitrate contamination of Sminja aquifer groundwater in Zaghouan, northeast Tunisia: WQI and GIS assessments. Desalination and Water Treatment. https://doi.org/10.1080/19443994.2015.1137495.

    Article  Google Scholar 

  • Amiri, M. J., Hamidifar, H., Bahrami, M., & Eslamian, S. (2016). Optimisation of deficit-irrigation under variable seasonal rainfall and planning scenarios for rice in a semi-arid region of Iran. International Journal of Hydrology Science and Technology, 6(4), 331–343.

    Google Scholar 

  • APH Association. (1998). Standard methods for the examination of water and waste water, 21st ed. Washington, DC: American Public Health Association.

  • Akpan, A. E., Ugbaja, A. N., Okoyeh, E. I., & George, N. J. (2018). Assessment of spatial distribution of contaminants and their levels in soil and water resources of Calabar, Nigeria using geophysical and geological data. Environmental Earth Sciences, 77(1), 13.

    Google Scholar 

  • Badee Nezhad, A., Emamjomeh, M. M., Farzadkia, M., Jonidi Jafari, A., Sayadi, M., & Davoudian Talab, A. H. (2017). Nitrite and nitrate concentrations in the drinking groundwater of Shiraz City, South-central Iran by statistical models. Iranian Journal of Public Health, 46(9), 1275–1284.

    Google Scholar 

  • Bahrami, M., Bazrkar, S., & Zarei, A. R. (2018). Modeling, prediction and trend assessment of drought in Iran using standardized precipitation index. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2018.174.

    Article  Google Scholar 

  • Bahrami, M., Zarei, A. R., & Chakav, S. (2017). Analysis of drought transitions using log-linear models in Iran. International Journal of Water, 11(3), 266–278.

    Google Scholar 

  • Beiranvand, B., Ghasemi-Nejad, E., Kamali, M. R., & Ahmadi, A. (2014). Sequence stratigraphy of the Late Cretaceous-Paleocene Gurpi Formation in southwest Iran. GeoArabia, 19(2), 89–102.

    Google Scholar 

  • Chand, S., Ashif, M., Zargar, M. Y., & Ayub, B. M. (2011). Nitrate pollution: a menace to human, soil, water and plant. Universal Journal of Environmental Research and Technology, 1, 22–32.

    CAS  Google Scholar 

  • Devendra, P., Yashwant, B. K., Pradeep, P. K., & Vilas, R. C. (2016). Nitrate contamination indexing of subsurface water of upper Wainganga Drainage Basin of India. International Journal of Innovative Research in Science, Engineering and Technology, 5(1), 161–170.

    Google Scholar 

  • Ducci, D., Della Morte, R., Mottola, A., Onorati, G., & Pugliano, G. (2019). Nitrate trends in groundwater of the Campania region (southern Italy). Environmental Science and Pollution Research, 26(3), 2120–2131.

    CAS  Google Scholar 

  • Ducci, D. (2018). An easy-to-use method for assessing nitrate contamination susceptibility in groundwater. Geofluids. https://doi.org/10.1155/2018/1371825.

    Article  Google Scholar 

  • Esmaeili, A., Moore, F., & Keshavarzi, B. (2014). Nitrate contamination in irrigation groundwater, Isfahan, Iran. Environmental Earth Sciences. https://doi.org/10.1007/s12665-014-3159-z.

    Article  Google Scholar 

  • Fienen, M. N., & Arshad, M. (2016). The international scale of the groundwater issue. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J. D. Rinaudo, & A. Ross (Eds.), Integrated groundwater. Cham: Springer.

    Google Scholar 

  • Green, C. T., Liao, L., Nolan, B. T., Juckem, P. F., Shope, C. L., Tesoriero, A. J., et al. (2018). Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA. Water Resources Research, 54(1), 301–322.

    Google Scholar 

  • Guangwei, H. (2013). Characterization of nitrate contamination in an arid region of China. Journal of Environmental Protection, 4, 46–52.

    Google Scholar 

  • Han, L., Huang, M., Ma, M., Wei, J., Hu, W., & Chouhan, S. (2018). Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China. Journal of Hydrology, 559, 661–668.

    CAS  Google Scholar 

  • Hoseinzadeh, E., Wei, C., Chavoshi, E., & Faghih, M. A. (2016). Groundwater quality and nitrate pollution modeling: an integrated study of contour mapping and geographic information system. Desalination and Water Treatment. https://doi.org/10.1080/19443994.2016.1150886.

    Article  Google Scholar 

  • Institute of Standard and Industrial Research of Iran (ISIRI). 2009. Standard number 1053: Drinking water, physical and chemical characteristics [in Persian].

  • Jahangeer Gupta, P. K., & Yadav, B. K. (2018). Spatial and temporal nitrate transport in deep heterogeneous vadose zone of India’s Alluvial Plain. In V. Singh, S. Yadav, & R. Yadava (Eds.), Groundwater. Water Science and Technology Library, Vol. 76. Singapore: Springer.

  • Liu, J., Jiang, L. H., Zhang, C. J., Li, P., & Zhao, T. K. (2017). Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China. In IOP conference series: Earth and environmental science, 82.012059

  • Maghanga, J. K., Kituyi, J. L., Kisinyo, P. O., & Ng’etich, W. K. (2013). Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan Tea Plantation. Journal of Chemistry, 196516.

  • Maghfouri-Moghadam, I., Zarei-Sahamieh, R., Ahmadi-Khalaji, A., & Tahmasbi, Z. (2009). Microbiostratigraphy of the Tarbur Formation, Zagros Basin, Iran. . Journal of Applied Sciences, 9, 1781–1785.

    Google Scholar 

  • Maghfouri Moghaddam, R., & Khanjai, Z. (2014). Microbiostratigraphy of the Oligo- Miocene Asmari Formation, Kuh Siah Anticline (Izeh Basin), SW Iran. Iranian Journal of Earth Sciences, 6, 114–120.

    Google Scholar 

  • Michel, D., Pandya, A., Hasnain, S. I., Sticklor, R., & Panuganti, S. (2012). Water challenges and cooperative response in the Middle East and North Africa. New York: Brookings Institution. Available at https://www.brookings.edu/about/projects/islamic-world.

  • Mir, S. A., Qadri, H., Beigh, B. A., Dar, Z. A., & Bashir, I. (2019). Assessment of nutrient status and water quality index of Rambiara stream, Kashmir Himalaya, India. . Journal of Pharmacognosy and Phytochemistry, 8(3), 172–180.

    CAS  Google Scholar 

  • Mohammadi, A. A., Yaghmaeian, K., Faraji, H., Nabizadeh, R., Dehghani, M. H., Khail Khaili, J., et al. (2017). Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using Geographic Information System. Desalination and Water Treatment, 68, 170–176.

    CAS  Google Scholar 

  • Mojid, M. A., Parvez, M. F., Mainuddin, M., & Hodgson, G. (2019). Water table trend—A sustainability status of groundwater development in North-West Bangladesh. Water, 11, 1182.

    Google Scholar 

  • Mokarram, M., Hamzeh, S., Aminzadeh, F., & Zarei, A. R. (2015a). Using machine learning for land suitability classification. West African Journal of Applied Ecology, 23(1), 63–73.

    Google Scholar 

  • Mokarram, M., Mmahmoodi, A. R., & Zarei, A. R. (2015b). Using geostatistic analysis for prediction of SAR in south of Iran. Journal of Industrial Pollution Control, 31(2), 143–148.

    Google Scholar 

  • Mokarram, M., Mokarram, M. J., Zarei, A. R., & Safari Nejadian, B. (2015c). The use of adaptive neuro-fuzzy network (ANFIS) to predict water quality. Journal of Ecohydrology, 4(2), 547–557. (In Persian).

    Google Scholar 

  • Mousavi, S. F., & Amiri, M. J. (2012). Modelling nitrate concentration of groundwater using adaptive Neural-Based Fuzzy Inference System. Soil and Water Research, 7(2), 73–83.

    CAS  Google Scholar 

  • Mozafarizadeh, J., & Sajadi, Z. (2014). Survey of groundwater chemical pollution in the Borazjan plain. Iranian South Medical Journal, 17(5), 927–937. (in Persian).

    Google Scholar 

  • Mukherjee, A., Soumendra Nath, B., & Wada, Y. (2018). Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Scientific Reports, 8, 12049.

    Google Scholar 

  • Naseri, H., Raghimi, M., & Yakhkeshi, M. E. (2006). Investigation of the effective factors variation of nitrate concentration in the groundwater of Ghareso Watershed Basin Golestan Province. Agricultural Science Nature, 13(1), 1–9.

    Google Scholar 

  • Nazaripour, H., Dostkamiyan, M., & Alizadeh, S. (2015). The spatial distribution patterns of temperature, precipitation, and humidity using geostatistical exploratory analysis (case study: Central Area of Iran). Journal of the Earth and Space Physics, 41(1), 99–101.

    Google Scholar 

  • Nosrati, K., & Zareiee, A. R. (2011). Assessment of meteorological drought using SPI in West Azarbaijan Province, Iran. . Journal of Applied Sciences and Environmental Management, 15(4), 563–569.

    Google Scholar 

  • Obeidat, M. M., Al-Ajlouni, A., Al-Rub, F. A., & Awawdeh, M. (2012). An innovative nitrate pollution index and multivariate statistical investigations of groundwater chemical quality of Umm Rijam Aquifer (B4). North Yarmouk River Basin: INTECH Open Access Publisher, Jordan.

    Google Scholar 

  • Ogrinc, N., Tamše, S., Zavadlav, S., Vrzel, J., & Jin, L. (2019). Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Science of the Total Environment, 646, 1588–1600.

    CAS  Google Scholar 

  • Rawat, K. S., Jeyakumar, L., Singh, S. K., & Tripathi, V. K. (2019). Appraisal of groundwater with special reference to nitrate using statistical index approach. Groundwater for Sustainable Development, 8, 49–58.

    Google Scholar 

  • Schipper, L. A., & Vojvodić-Vuković, M. (2000). Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 14(3), 269–278.

    Google Scholar 

  • Sneyers, R. (1990). On the statistical analysis of series of observations. World Meteorological Organization, Technical Note No. 143, WMO No. 415.

  • Sun, J., Li, Z., Xue, L., Wang, T., Wang, X., Gao, J., et al. (2018). Summertime C1–C5 alkyl nitrates over Beijing, northern China: spatial distribution, regional transport, and formation mechanisms. Atmospheric Research, 204, 102–109.

    CAS  Google Scholar 

  • Turner, S. W. D., Hejazi, M., Yonkofski, C., Kim, S. H., & Kyle, P. (2019). Influence of groundwater extraction costs and resource depletion limits on simulated global nonrenewable water withdrawals over the twenty-first century. Earth's Future, 7, 123–135.

    Google Scholar 

  • Voss, K. A., Famiglietti, J. S., Lo, M., Linage, C., Rodell, M., & Swenson, S. C. (2013). Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resources Research, 49(2), 904–914.

    Google Scholar 

  • Wang, G. F., Satake, M., & Horita, K. (1998). Spectrophotometric determination of nitrate and nitrite in water and some fruit samples using column preconcentration. Talanta, 46, 671–678.

    CAS  Google Scholar 

  • Water Health Organization (WHO). (2011). Guidelines for drinking-water quality, 4th edn. ISBN 9789241548151564.

  • Werner, A. D., Zhang, Q., Xue, L., Smerdon, B. D., Li, X., Zhu, X., et al. (2013). An initial inventory and indexation of groundwater mega-depletion cases. Water Resour Manag, 27(2), 507–533.

    Google Scholar 

  • Yin, S., Xiao, Y., Gu, X., Hao, Q., Liu, H., Hao, Z., et al. (2019). Geostatistical analysis of hydrochemical variations and nitrate pollution causes of groundwater in an alluvial fan plain. Acta Geophysica, 1–13.

  • Yousefi, Z., Barafrashteh Pour, M., Taghavi, M., Mashayekh Salehi, A., & Sedaghat, F. (2013). Survey on temporal and spatial variation of nitrate and nitrite in drinking water of Gachsaran by using Geographic Information System (GIS). Journal of Mazandaran University of Medical Sciences, 22(2), 158–162. (in Persian).

    Google Scholar 

  • Zarei, A. R., & Bahrami, M. (2016). Evaluation of quality and quantity changes of underground water in Fasa plain, Fars (2006–2013). Irrigation and Water Engineering Journal, 24, 103–113. (in Persian).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank water laboratories of Fasa University and Darab University for providing the facilities to perform this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Bahrami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, M., Zarei, A.R. & Rostami, F. Temporal and spatial assessment of groundwater contamination with nitrate by nitrate pollution index (NPI) and GIS (case study: Fasarud Plain, southern Iran). Environ Geochem Health 42, 3119–3130 (2020). https://doi.org/10.1007/s10653-020-00546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00546-x

Keywords

Navigation