Skip to main content
Log in

Copper and lead ion removal from wastewater using fava d’anta fodder (Dimorphandra gardneriana Tulasne)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The contamination of bodies of water by potentially hazardous elements has in recent decades become an environmental problem that poses serious risks to humans, fauna, flora and microbiota, compromising the quality of life of the present ecosystem. Therefore, effluents must be properly treated in a legally acceptable manner before their disposal in the environment. With this in mind, adsorption presents itself as an inexpensive efficient technique for the removal of potentially hazardous elements from effluents with excellent adsorption capacities when natural adsorbents are used. In this study, fava d’anta fodder was used in its crude and alkalinized form to remove Cu(II) and Pb(II) ions. Equilibrium studies were carried out using adsorption isotherms in batch systems with mono- and multi-elementary systems containing the two ions. The Langmuir and Freundlich models were applied to the isotherm studies, with the ions being better suited to the Langmuir model, with maximum adsorption capacities of 24.45 mg g−1 and 68.49 mg g−1 (crude form) and 11.12 mg g−1 and 35.34 mg g−1 (alkalinized form) in the mono-elementary system for Cu(II) and Pb(II) ions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araújo, C. S. T., et al. (2010). Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents. Water Science & Technology, 62(9), 2198–2203.

    Article  Google Scholar 

  • Baes, C. F., & Mesmer, R. E. (1977). The hydrolysis of cations. Journal of Chemical Education. https://doi.org/10.1021/ed054pA429.1.

    Article  Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377.

    Article  CAS  Google Scholar 

  • Barbosa, L. C. A. (2007). Espectroscopia no infravermelho na caracterização de compostos orgânicos. Viçosa: UFV.

    Google Scholar 

  • Barreto, A. C. H., et al. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites: Part A, 42(5), 492–500.

    Article  Google Scholar 

  • Benedetti, M. F., et al. (1995). Metal ion binding by humic substances: application of the non-ideal competitive adsorption model. Environmental Science and Technology, 29(2), 446–457.

    Article  CAS  Google Scholar 

  • Chand, P., et al. (2014). Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics. International Biodeterioration and Biodegradation, 90, 8–16.

    Article  CAS  Google Scholar 

  • Cooney, D. O. (1999). Adsorption design for wastewater treatment. Boca Raton: CRC Press.

    Google Scholar 

  • Febrianto, J., et al. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162(2), 616–645.

    Article  CAS  Google Scholar 

  • Feng, N., et al. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials, 185(1), 49–54.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.

    Article  CAS  Google Scholar 

  • Gómez, D. N. (2014). Potencial da casca de camarão para remediação de águas contaminadas com drenagem ácida mineral visando seu reuso secundário não potável. Dissertação de Mestrado, Universidade Federal de Santa Catarina, Florianópolis.

  • Gonçalves, J. R. A. C., et al. (2010). Comparação entre um trocador aniônica de sal de amônio quaternário de quitosana e um trocador comercial na extração de fósforo disponível em solos. Química Nova, 33(5), 1047–1052.

    Article  Google Scholar 

  • Guo, X., Zhang, S., & Shan, X. (2008). Adsorption of metal ions on lignin. Journal of Hazardous Materials, 151(1), 134–142.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Srivastava, S. K., Mohan, D., & Sharma, S. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17(8), 517–522.

    Article  CAS  Google Scholar 

  • Han, R., et al. (2010). Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydrate Polymers, 79(4), 1140–1149.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 36(3), 681–689.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2004). Sorption of copper(II) from aqueous solution by peat. Water, Air, and Soil Pollution, 158(1), 77–97.

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2005). Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto ion oxide-coated cement (IOCC). Journal of Colloid and Interface Science, 290(1), 52–60.

    Article  CAS  Google Scholar 

  • Magdya, Y. H., & Daifullah, A. A. M. (1998). Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations. Waste Management, 18(4), 219–226.

    Article  Google Scholar 

  • Matouq, M. N., et al. (2015). The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. Journal of Environmental Chemical Engineering, 3(2), 775–784.

    Article  CAS  Google Scholar 

  • Melo, D. Q., et al. (2014). Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent. Journal of Applied Polymer Science, 131(20), 40883.

    Article  Google Scholar 

  • Misono, M., et al. (1967). A new dual parameter scale for the strength of Lewis acids and bases with the evaluation of their softness. Journal of Inorganic and Nuclear Chemistry, 29(11), 2685–2691.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2001). Single component and multicomponent metal ions adsorption by activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2), 183–196.

    Article  CAS  Google Scholar 

  • Mohapatra, M., et al. (2009). Sorption behavior of Pb(II) and Cd (II) on iron ore slime and characterization of metal ion loaded sorbent. Journal of Hazardous Materials, 16(2), 1506–1513.

    Article  Google Scholar 

  • Moreira, S. A. (2008). Adsorção de íons metálicos de efluente aquoso usando bagaço do pedúnculo de caju: estudo de batelada e coluna de leito fixo. Dissertação de Mestrado, Universidade Federal do Ceará, Fortaleza.

  • Özkaya, B. (2005). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. Journal of Hazardous Materials, 129(1), 158–163.

    Google Scholar 

  • Pascoal, N. C., et al. (1995). 13C solid-state nuclear magnetic resonance and Fourier transform infrared studies of the thermal decomposition of cork. Solid State Nuclear Magnetic Resonance, 4(3), 143–151.

    Article  Google Scholar 

  • Ramos, S. N. C., et al. (2015). Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study. Industrial Crops and Products, 74, 357–371.

    Article  CAS  Google Scholar 

  • Raulino, G. S. C. (2016). Biossorção em sistema multielementar dos íons Pb2+, Cu2+, Ni2+, Cd2+ e Zn2+ em solução aquosa usando a vagem seca do feijão (Phaseolus vulgaris L.) modificada: otimização usando planejamento fatorial. Fortaleza: Tese de Doutorado, Universidade Federal do Ceará.

    Google Scholar 

  • Roginsky, S. Z., & Zeldovich, J. (1934). The catalytic oxidation of carbon monoxide on manganese dioxide. Acta Physico-chimica USSR, 1, 554.

    Google Scholar 

  • Satyanarayana, J., Murthy, G. S., & Sasidhar, P. (1999). Adsorption studies of caesium on zirconium molybdoarsenate. Waste Management, 19(6), 427–432.

    Article  CAS  Google Scholar 

  • Sousa, N. V. O., et al. (2012). Coconut Bagasse treated by thiourea/ammonia solution for cadmium removal: kinetics and adsorption equilibrium. BioResources, 7(2), 1504–1524.

    Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Separation Science and Technology, 41(12), 2685–2710.

    Article  CAS  Google Scholar 

  • Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Sulaymon, A. H., Ebrahim, S. E., & Mohammed, R. M. J. (2013). Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environmental Science and Pollution Research, 20(1), 175–187.

    Article  CAS  Google Scholar 

  • Teixeira, R. N. P. (2015). Remoção de Cu(II), Ni(II), Cd(II) e Pb(II) de efluentes de indústrias de galvanoplastia usando o sistema híbrido adsorção-eletroflotação-coagulação. Fortaleza: Tese de Doutorado, Universidade Federal do Ceará.

    Google Scholar 

  • Umesh, K. G., Kaur, M. P., Garg, V. K., & Sud, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 140(1), 60–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Douglas Melo Coutinho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, A.H., Araújo, J.A.S., Bento, A.M.S. et al. Copper and lead ion removal from wastewater using fava d’anta fodder (Dimorphandra gardneriana Tulasne). Environ Geochem Health 43, 1583–1597 (2021). https://doi.org/10.1007/s10653-020-00545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00545-y

Keywords

Navigation