Skip to main content

Advertisement

Log in

Trace metals geochemistry for health assessment coupled with adsorption remediation method for the groundwater of Lorong Serai 4, Hulu Langat, west coast of Peninsular Malaysia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10–6 to 10–4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2−/SO42− redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad, N., Rehman, J. U., Rafique, M., & Nasir, T. (2017). Age-dependent annual effective dose estimations of 226Ra, 232Th, 40K and 222Rn from drinking water in Baling, Malaysia. Water Science and Technology: Water Supply, 18(1), 32–39.

    Google Scholar 

  • Aiken, S. R., Leigh, C. H., Leinbach, T. R., & Moss, M. R. (1982). Development and environment in Peninsular Malaysia. Singapore: McGraw-Hill.

    Google Scholar 

  • Akoto, O., & Adiyiah, J. (2007). Chemical analysis of drinking water from some communities in the Brong Ahafo region. International Journal of Environmental Science & Technology, 4(2), 211–214.

    CAS  Google Scholar 

  • Alam, L., Mokhtar, M. B., Alam, M. M., Bari, M. A., Kathijotes, N., Ta, G. C., et al. (2015). Seasonal variation and preliminary risk assessment of trace element pollution in surface water from Langat River, Malaysia. International Journal of Applied Environmental Sciences, 10(1), 19–40.

    Google Scholar 

  • Amarathunga, U., Diyabalanage, S., Bandara, U., & Chandrajith, R. (2019). Environmental factors controlling arsenic mobilization from sandy shallow coastal aquifer sediments in the Mannar Island, Sri Lanka. Applied Geochemistry, 100, 152–159.

    CAS  Google Scholar 

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49.

    CAS  Google Scholar 

  • Atiqah, A., Syafawanie, A., Syafiqah, A., Izhar, I., Zarif, M., Abdelazim, A., et al. (2017). Hydrogeological and environmental study of Sungai Serai, Hulu Langat. Pakistan Journal of Geology (PJG), 1(1), 8–11.

    Google Scholar 

  • Badruddoza, A. Z. M., Shawon, Z. B. Z., Rahman, M. T., Hao, K. W., Hidajat, K., & Uddin, M. S. (2013). Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical Engineering Journal, 225, 607–615.

    CAS  Google Scholar 

  • Bhowmick, S., Pramanik, S., Singh, P., Mondal, P., Chatterjee, D., & Nriagu, J. (2018). Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Science of the Total Environment, 612, 148–169.

    CAS  Google Scholar 

  • Borgoño, J. M., Vicent, P., Venturíno, H., & Infante, A. (1977). Arsenic in the drinking water of the city of Antofagasta: Epidemiological and clinical study before and after the installation of a treatment plant. Environmental Health Perspectives, 19, 103–105.

    Google Scholar 

  • Bourke, E., Mallick, N. P., & Pollak, V. E. (1993). Moving points in nephrology (Vol. 102). Basel: Karger Medical and Scientific Publishers.

    Google Scholar 

  • Cantor, K. P. (1997). Drinking water and cancer. Cancer Causes & Control, 8(3), 292–308.

    CAS  Google Scholar 

  • Cebrian, M. E., Albores, A., Aguilar, M., & Blakely, E. (1983). Chronic arsenic poisoning in the north of Mexico. Human Toxicology, 2(1), 121–133.

    CAS  Google Scholar 

  • Çeliker, M., Türkmen, S., Güler, C., & Kurt, M. A. (2019). Factors controlling arsenic and selected potentially toxic elements in stream sediment–soil and groundwater–surface water systems of a hydrologically modified semi-closed basin (Uluova) in Elazığ Province, Eastern Turkey. Journal of Hydrology, 569, 167–187.

    Google Scholar 

  • Chakraborty, A., & Saha, K. (2013). Arsenical dermatosis from tubewell water in West Bengal. Indian Journal of Medical Research, 137(6), 326–334.

    Google Scholar 

  • Chen, C.-J., Chuang, Y.-C., Lin, T.-M., & Wu, H.-Y. (1985). Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: High-arsenic artesian well water and cancers. Cancer Research, 45(11 Part 2), 5895–5899.

    CAS  Google Scholar 

  • Davraz, A. (2015). Studies of geogenic groundwater contamination in southwestern Anatolia, Turkey. Procedia Earth and Planetary Science, 15, 435–441.

    CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

    CAS  Google Scholar 

  • Duggal, V., Rani, A., Mehra, R., & Balaram, V. (2017). Risk assessment of metals from groundwater in northeast Rajasthan. Journal of the Geological Society of India, 90(1), 77–84.

    CAS  Google Scholar 

  • EPA, A. (2004). Risk assessment guidance for superfund. Volume I: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment): EPA/540/R/99.

  • Fato, F. P., Li, D.-W., Zhao, L.-J., Qiu, K., & Long, Y.-T. (2019). Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega, 4(4), 7543–7549.

    CAS  Google Scholar 

  • Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin, 55(2), 187–196.

    CAS  Google Scholar 

  • Ganyaglo, S. Y., Gibrilla, A., Teye, E. M., Owusu-Ansah, E. D.-G. J., Tettey, S., Diabene, P. Y., et al. (2019). Groundwater fluoride contamination and probabilistic health risk assessment in fluoride endemic areas of the Upper East Region, Ghana. Chemosphere, 233, 862–872.

    CAS  Google Scholar 

  • Ghani, A. A. (2000). Chemical variation of muscovite from the Kuala Lumpur granite, Peninsular Malaysia.

  • Grazuleviciene, R., Nadisauskiene, R., Buinauskiene, J., & Grazulevicius, T. (2009). Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Polish Journal of Environmental Studies, 18(5), 819–825.

    CAS  Google Scholar 

  • Gualtieri, A. F., Andreozzi, G. B., Tomatis, M., & Turci, F. (2019). Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radical Biology and Medicine, 133, 21–37.

    CAS  Google Scholar 

  • Guo, F.-Y., Liu, Y.-G., Wang, H., Zeng, G.-M., Hu, X.-J., Zheng, B.-H., et al. (2015). Adsorption behavior of Cr (VI) from aqueous solution onto magnetic graphene oxide functionalized with 1, 2-diaminocyclohexanetetraacetic acid. RSC Advances, 5(56), 45384–45392.

    CAS  Google Scholar 

  • Hodgkinson, J., Cox, M. E., & Mcloughlin, S. (2008). Coupling mineral analysis with conceptual groundwater flow modelling: The source and fate of iron, aluminium and manganese in a back-barrier island. Chemical Geology, 251(1–4), 77–98.

    CAS  Google Scholar 

  • Hopenhayn-Rich, C., Biggs, M. L., Fuchs, A., Bergoglio, R., Tello, E. E., Nicolli, H., et al. (1996). Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology, 7, 117–124.

    CAS  Google Scholar 

  • Huq, M. E., Fahad, S., Shao, Z., Sarven, M. S., Al-Huqail, A. A., Siddiqui, M. H., et al. (2019). High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. Journal of Environmental Management, 242, 199–209.

    CAS  Google Scholar 

  • Hussin, N. H., Yusoff, I., Alias, Y., Mohamad, S., Rahim, N. Y., & Ashraf, M. A. (2014). Ionic liquid as a medium to remove iron and other metal ions: A case study of the North Kelantan Aquifer, Malaysia. Environmental Earth Sciences, 71(5), 2105–2113.

    CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298.

    CAS  Google Scholar 

  • Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental health perspectives, 115(11), 1533–1538.

    CAS  Google Scholar 

  • Mahdavi, S., Jalali, M., & Afkhami, A. (2012). Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles. In Nanotechnology for sustainable development (pp. 171–188). Springer.

  • Mahzan, A. A. B., Ramli, A. S. B., Abduh, A. S. B. M., Izhar, I. B., Indirakumar, M. Z. B. M. Y., Salih, A. A. M., et al. (2017). Preliminary study of Sg Serai hot spring. Malaysia: Hulu Langat.

    Google Scholar 

  • Memarian, H., Balasundram, S. K., Abbaspour, K. C., Talib, J. B., Boon Sung, C. T., & Sood, A. M. (2014). SWAT-based hydrological modelling of tropical land-use scenarios. Hydrological Sciences Journal, 59(10), 1808–1829.

    Google Scholar 

  • Radfard, M., Yunesian, M., Nabizadeh, R., Biglari, H., Nazmara, S., Hadi, M., et al. (2019). Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran. Human and Ecological Risk Assessment: An International Journal, 25(4), 949–965.

    CAS  Google Scholar 

  • Rahman, S. M., Kippler, M., Ahmed, S., Palm, B., El Arifeen, S., & Vahter, M. (2015). Manganese exposure through drinking water during pregnancy and size at birth: A prospective cohort study. Reproductive Toxicology, 53, 68–74.

    CAS  Google Scholar 

  • Rajput, S., Pittman, C. U., Jr., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346.

    CAS  Google Scholar 

  • Rose, A. K., Fabbro, L., & Kinnear, S. (2017). Hydrogeochemistry in a relatively unmodified subtropical catchment: Insights regarding the health and aesthetic risks of manganese. Journal of Hydrology: Regional Studies, 13, 152–167.

    Google Scholar 

  • Saleh, H. N., Panahande, M., Yousefi, M., Asghari, F. B., Conti, G. O., Talaee, E., et al. (2019). Carcinogenic and non-carcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur Plain, Iran. Biological Trace Element Research, 190(1), 251–261.

    CAS  Google Scholar 

  • Somu, P., Kannan, U., & Paul, S. (2019). Biomolecule functionalized magnetite nanoparticles efficiently adsorb and remove heavy metals from contaminated water. Journal of Chemical Technology & Biotechnology, 94(6), 2009–2022.

    CAS  Google Scholar 

  • Southwick, J. (1983). An epidemiological study of arsenic in drinking water in Millard County, Utah. In Arsenic: Industrial, biomedical, environmental perspectives.

  • Sun, Z.-X., Su, F.-W., Forsling, W., & Samskog, P.-O. (1998). Surface characteristics of magnetite in aqueous suspension. Journal of Colloid and Interface Science, 197(1), 151–159.

    CAS  Google Scholar 

  • Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the Academy of Nutrition and Dietetics, 101(3), 294.

    CAS  Google Scholar 

  • Tseng, W., Chu, H. M., How, S., Fong, J., Lin, C., & Yeh, S. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute, 40(3), 453–463.

    CAS  Google Scholar 

  • Varol, M., & Sünbül, M. R. (2018). Biomonitoring of trace metals in the Keban dam reservoir (Turkey) using mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus). Biological Trace Element Research, 185(1), 216–224.

    CAS  Google Scholar 

  • Villa, S., Riani, P., Soggia, F., Magi, E., & Canepa, F. (2019). Thiol-functionalized magnetic nanoparticles for static and dynamic removal of Pb (II) ions from waters. Journal of Nanoparticle Research, 21(3), 44.

    Google Scholar 

  • Warner, M. L., Moore, L. E., Smith, M. T., Kalman, D. A., Fanning, E., & Smith, A. H. (1994). Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada. Cancer Epidemiology and Prevention Biomarkers, 3(7), 583–590.

    CAS  Google Scholar 

  • Who, U. (2001). UNU. In Iron deficiency anaemia: Assessment, prevention and control, a guide for programme managers. Geneva: World Health Organization.

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., et al. (2012). Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1–10.

    CAS  Google Scholar 

  • Vikrant, K., Giri, B. S., Raza, N., Roy, K., Kim, K.-H., Rai, B. N., & Singh, R. S. (2018). Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology, 253, 355–367.

    CAS  Google Scholar 

  • Yan, H., Li, H., Tao, X., Li, K., Yang, H., Li, A., et al. (2014). Rapid removal and separation of iron (II) and manganese (II) from micropolluted water using magnetic graphene oxide. ACS Applied Materials & Interfaces, 6(12), 9871–9880.

    CAS  Google Scholar 

  • Zaaba, N., Foo, K., Hashim, U., Tan, S., Liu, W.-W., & Voon, C. (2017). Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Engineering, 184, 469–477.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Nursyahira Binti Ismail of the Hydrogeological laboratory, Department of Geology, University of Malaya, for her support during field sampling and laboratory analysis. We also thank and are grateful to Mr Mutari Lawal of the Geology Department, Usman Danfodiyo University Sokoto, Nigeria, for his contribution in digitizing geological map of the study area and University Malaya Faculty Research Grant (GPF058B-2018) for providing fund for characterization of the materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Usman Abdullahi Usman or Ismail Yusoff.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest regarding this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jonathan Hodgkinson was formerly at School of Natural Resource Science, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, U.A., Yusoff, I., Raoov, M. et al. Trace metals geochemistry for health assessment coupled with adsorption remediation method for the groundwater of Lorong Serai 4, Hulu Langat, west coast of Peninsular Malaysia. Environ Geochem Health 42, 3079–3099 (2020). https://doi.org/10.1007/s10653-020-00543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00543-0

Keywords

Navigation