Skip to main content

Advertisement

Log in

Health concerns on provisional tolerable weekly intake of aluminium in children and adults from vegetables in Mandi-Gobindgarh (India)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Metallurgical industrial processes have been reported to cause higher aluminium (Al) exposure in humans through plant food intake due to higher soil Al content and acidification of soil resulted from industrial acid rains. Mandi-Gobindgarh is critically environmentally polluted steel industrial town in India in which Al is used for deoxidation, grain refining and alloying in steel production. The Al processing has been reported to release Al into the environment, and therefore present study was undertaken to investigate the dietary Al exposure in children and adult population of Mandi-Gobindgarh from consumption of vegetable food stuffs grown in the fields around steel industries. Thirteen vegetable types including fruit vegetables, root vegetables, and leafy vegetables (LVs) along with soil samples were collected from agricultural fields around M-site (Mandi-Gobindgarh industrial site) and C-site (control non-industrial site) and analysed for Al on WD-XRF. Higher vegetable Al content was reported due to higher soil Al content and higher acidic soil pH at M-site than C-site. Correlation coefficient data have shown positive correlation of plant/vegetable Al with soil Al whereas negative correlation with soil pH at both the sites. Hierarchical cluster analysis based on vegetable Al content and bioaccumulation factor depicted higher number of clusters of vegetables at M-site (3-clusters) than C-site (2-clusters). The hazard quotients for Al intake in children and adults were found less than one. However, the weekly dietary Al exposure data have shown more than provisional tolerable weekly intake of 2 mg/kgbw/week in them from two LVs (Spinach and Brassica) from M-site than C-site which increases health concerns in humans from Mandi-Gobindgarh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albanese, S., De-Luca, M. L., De Vivo, B., Lima, A., & Rezzi, G. (2008). Relationship between heavy metals distribution and cancer mortality rates in the Campania Region Italy. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environment geochemistry (pp. 387–400). Amsterdam: Elsevier.

    Google Scholar 

  • Alfrey, A. C., Hegg, A., & Craswell, P. (1980). Metabolism and toxicity of aluminum in renal failure. The American Journal of Clinical Nutrition, 33, 1509–1516.

    CAS  Google Scholar 

  • Al-Masalkhi, A., & Walton, S. P. (1994). Pulmonary fibrosis and occupational exposure to aluminum. The Journal of the Kentucky Medical Association, 92(2), 59–61.

    CAS  Google Scholar 

  • Andia, J. B. (1996). Aluminum toxicity: Its relationship with bone and iron metabolism. Nephrology, Dialysis, Transplantation, 11(3), 69–73.

    CAS  Google Scholar 

  • Antoine, J. M. R., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4, 181–187.

    CAS  Google Scholar 

  • Arnich, N., Sirot, V., Riviere, G., Jean, J., Noel, L., Guerin, T., et al. (2012). Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet study. Food and Chemical Toxicology, 50, 2432–2449.

    CAS  Google Scholar 

  • ATSDR. (2008). Toxicological profile for aluminium. USA: Department of Health and Human Services, Public Health Service.

    Google Scholar 

  • ATSDR. (2018). Public health statement: Aluminium. Retrieved July 18, 2018, from www.atsdr.cdc.gov.

  • Bains, K. S. (2007). Analysis of various vegetable preparations for calcium, iron and zinc intake of Punjabi urban and rural families. Natural Product Radiance, 6, 106–110.

    Google Scholar 

  • Banks, W. A., & Kastin, A. J. (1989). Aluminum-induced neurotoxicity: Alterations in membrane function at the blood–brain barrier. Neuroscience and Biobehavioral Reviews, 13(1), 47–53. https://doi.org/10.1016/S0149-7634(89)80051-X.

    Article  CAS  Google Scholar 

  • Barabasz, W., Albinska, D., Jaskowska, M., & Lipiec, J. (2002). Ecotoxicology of aluminium. Polish Journal of Environmental Studies, 11(3), 199–203.

    CAS  Google Scholar 

  • Biego, G. H., Joyeux, M., Hartemann, P., & Debry, G. (1998). Daily intake of essential minerals and metallic micro-pollutants from foods in France. Science of the Total Environment, 217, 27–36.

    CAS  Google Scholar 

  • Bielanski, A. (1987). Fundamentals of inorganic chemistry (pp. 786–883). Warsaw: PWN.

    Google Scholar 

  • Bondy, S. C. (2010). The neurotoxicity of environmental aluminium is still an issue. Neurotoxicology, 31, 575–581.

    CAS  Google Scholar 

  • Bratakos, S. M., Lazou, A. E., Bratakos, M. S., & Lazos, E. S. (2012). Aluminium in food and daily dietary intake estimate in Greece. Food Additives and Contaminants: Part B, 5(1), 33–44. https://doi.org/10.1080/19393210.2012.656289.

    Article  CAS  Google Scholar 

  • Cappuyns, V., Swennen, R., & Verhulst, J. (2004). Assessment of acid neutralizing capacity and potential mobilisation of trace metals from land-disposed dredged sediments. Science of the Total Environment, 333, 233–247.

    CAS  Google Scholar 

  • Chan, J. K., & Thyssen, J. P. (2018). Metal allergy: From dermatitis to implant and device failure (p. 333). Berlin: Springer.

    Google Scholar 

  • Chauhan, G., & Chauhan, U. K. (2014). Human health risk assessment of heavy metals via dietary intake of vegetables grown in wastewater irrigated area of Rewa, India. IJSRP, 4(9), 1–9.

    Google Scholar 

  • Ciamporova, M. (2002). Morphological and structural responses of roots to aluminium at organ, tissue and cellular levels. Journal of Plant Biology, 45(2), 161–171.

    CAS  Google Scholar 

  • CPCB. (2003). Guidelines for ambient air quality monitoring, Report under central Pollution Control Board, Ministry of Environmental and Forests.

  • Das, B., Prakash, S., Reddy, P. S., Biswal, S. K., Mohapatra, B. K., & Misra, V. N. (2002). Effective utilization of blast furnace flue dust of integrated steel plants. European Journal of Mineral Processing & Environmental Protection, 2(2), 61–68.

    CAS  Google Scholar 

  • De Vries, W., Schütze, G., Lofts, S., Tipping, E., Meili, M., Römkens, P. F. A. M., et al. (2005). Calculation of critical loads for cadmium, lead and mercury. Background document to a mapping manual on critical loads of cadmium, lead and Mercury (p. 43). Wageningen: Alterra.

  • Di Paolo, N., Masti, A., Comparini, I. B., Garosi, G., Di Paolo, M., Centini, F., et al. (1997). Uremia, dialysis and aluminium. International Journal of Artificial Organs, 20, 547–552.

    Google Scholar 

  • Dolara, P. (2014). Occurrence, exposure, effects, recommended intake and possible dietary use of selected trace compounds (aluminium, bismuth, cobalt, gold, lithium, nickel, silver). International Journal of Food Sciences and Nutrition, 65(8), 911–924. https://doi.org/10.3109/09637486.2014.937801.

    Article  CAS  Google Scholar 

  • Dragun, J. (1988). The soil chemistry of hazardous materials. Silver Spring: Hazardous Materials Control Research Institute, MDUSA.

    Google Scholar 

  • EFSA. (2008). Safety of aluminum from dietary intake. Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). EFSA Journal, 754, 1–34.

    Google Scholar 

  • Fergusson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects (p. 614). Oxford: Pergamon Press.

    Google Scholar 

  • Frank, W. B. (2009). “Aluminum”. Ullmann’s encyclopedia of industrial chemistry. New York: Wiley. https://doi.org/10.1002/14356007.a01_459.pub2.

    Book  Google Scholar 

  • Fung, K. F., Carr, H. P., Poon, B. H. T., & Wong, M. H. (2009). A comparison of aluminium levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. Chemosphere, 75(7), 955–962.

    CAS  Google Scholar 

  • Ghosh, P. (2010). An iron-town called Mandi-Gobindgarh. Retrieved December 10, 2019, from https://www.livemint.com/Companies/fQRYRYm6zvRo7NYMmUTV1N/An-iron-town-called-Mandi-Gobindgarh.html.

  • Ghosh, P., & Jain, A. (2010). Recycling what the world throws away. Retrieved December 10, 2019, from https://www.livemint.com/Home-Page/lr561biwL0uNJZn6pzN0hP/Recycling-what-the-world-throws-away.html.

  • Gitelman, H. J., Alderman, F. R., Kurs-Lasky, M., & Rockette, H. E. (1995). Serum and urinary aluminium levels of workers in the aluminium industry. Annals of Occupational Hygiene, 39, 181–191.

    CAS  Google Scholar 

  • Gonzalez-Weller, D., Gutierrez, A. J., Rubio, C., Revert, C., & Hardisson, A. (2010). Dietary intake of aluminium in a Spanish population (Canary Islands). Journal of Agriculture and Food Chemistry, 58, 10452–10457. https://doi.org/10.1021/jf102779t.

    Article  CAS  Google Scholar 

  • Gopienko, V. G. (2019). Chapter 14—Production of aluminum powders. In O. Neikov (Ed.), Handbook of Non-Ferrous Metal Powders. Technologies and Applications (2nd ed., pp. 459–480). Amsterdam: Elsevier

    Google Scholar 

  • Graczyk, A., & Dlugaszek, M. (1993). The biochemical processes and molecular mechanisms of aluminium toxicity. Rocz PZH, 44(1), 23–42.

    CAS  Google Scholar 

  • Grime, J. P., & Hodgson, J. S. (1969). An investigation of the significance by means of large scale comparative experiments. In I. H. Rorison (Ed.), Ecological aspects of the mineral nutrition of plants (pp. 381–397). Oxford: Blackwell.

    Google Scholar 

  • Gupta, V. B., Anitha, S., Hegde, M. L., Zecca, L., Garruto, R. M., Ravid, R., et al. (2005). Aluminium in Alzheimer’s disease: are we still at a crossroad? Cellular and Molecular Life Sciences, 62, 143–158.

    CAS  Google Scholar 

  • Gupta, N., Gaurav, S. S., & Kumar, A. (2013a). Molecular basis of aluminium toxicity in plants: A review. American Journal of Plant Sciences, 4, 21–37.

    Google Scholar 

  • Gupta, S., Grewal, D. S., & Gupta, A. (2013b). Water and soil pollution in Punjab with special reference to Mandi-Gobindgarh and surrounding areas. AJER, 2(9), 251–257.

    Google Scholar 

  • Hernandez-Sanchez, A., Tejada-Gonzalez, P., & Arteta-Jimenez, M. (2013). Aluminium in parenteral nutrition: A systematic review. European Journal of Clinical Nutrition, 67, 230–238.

    CAS  Google Scholar 

  • Huang, X. L., Badawy, A. E., Arambewela, M., Ford, P., Barlaz, M., & Tolaymat, T. (2014). Characterization of salt cake from secondary aluminium production. Journal of Hazardous Materials, 273, 192–199.

    CAS  Google Scholar 

  • Jansen, S., Broadley, M. R., Robbrecht, E., & Smets, E. (2002). Aluminium hyperaccumulation in Angiosperms: A review of its phylogenetic significance. The Botanical Review, 68, 235–269.

    Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives. (2011). Evaluation of certain food additives and contaminants. WHO Technical Report Series, 966, 7–17.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1993). Biogeochemistry of trace elements (p. 363). Warsaw: PWN.

    Google Scholar 

  • Khan, Z. I., Bibi, Z., Ahmad, K., Akram, N. A., Ashraf, M., & Al-Qurainy, F. (2015). Risk evaluation of heavy metals and metalloids toxicity through polluted vegetables from wastewater irrigated area of Punjab, Pakistan: Implications for Public health. Human and Ecological Risk Assessment, 21, 2062–2076. https://doi.org/10.1080/10807039.2015.1017875.

    Article  CAS  Google Scholar 

  • Khurana, M. P. S., & Bansal, R. L. (2008). Impact of sewage irrigation on speciation of nickel in soils and its accumulation in crops of industrial towns of Punjab. Journal of Environmental Biology, 29(5), 793–798.

    CAS  Google Scholar 

  • Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., et al. (2007). Human health risk assessment for aluminium, aluminium oxide and aluminium hydroxide. Journal of Toxicology and Environmental Health, Part B Critical Reviews, 10(S1), 1–269.

    CAS  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils (p. 449). New York: Wiley.

    Google Scholar 

  • Ma, J. F., Ryan, P. R., & Delhaize, E. (2001). Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science, 6, 273–278.

    CAS  Google Scholar 

  • Malluche, H. H. (2002). Aluminium and bone disease in chronic renal failure. Nephrology, Dialysis, Transplantation, 17(2), 21–24.

    CAS  Google Scholar 

  • Mandal, R., & Kaur, S. (2019). Impact of environmental pollution on trace elements in vegetables and associated potential risks to Human health in industrial town Mandi-Gobindgarh (India). Chemosphere, 219, 574–587.

    CAS  Google Scholar 

  • Masunaga, T., Kubota, D., Hotta, M., & Wakatsuki, T. (1998). Mineral composition of leaves and bark in aluminium accumulators in a tropical rain forest in Indonesia. Soil Science and Plant Nutrition, 44, 347–358.

    CAS  Google Scholar 

  • Matczak-jon, E. (1995). Aluminium in environment. Wiadomosci Chemiczne, 49, 483–500.

    CAS  Google Scholar 

  • Matsumoto, H. (2000). Cell biology of aluminium toxicity and tolerance in higher plants. International Review of Cytology, 200, 1–47.

    CAS  Google Scholar 

  • Metali, F., Salim, K. A., & Burslem, D. F. R. P. (2012). Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytologist, 193, 637–649.

    CAS  Google Scholar 

  • Metali, F., Salim, K. A., Tennakoon, K., & Burslem, D. F. R. P. (2015). Controls on foliar nutrient and aluminium concentrations in a tropical tree Flora: Phylogeny, soil chemistry and interactions among elements. New Phytologist, 205, 280–292.

    CAS  Google Scholar 

  • Mossor-Pietraszewska, T. (2001). Effect of aluminium on plant growth and metabolism—Review. Acta Biochimica Polonica, 48(3), 673–686.

    CAS  Google Scholar 

  • Namuhani, N., & Kimumwe, C. (2015). Soil contamination with heavy metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda. Journal of Health and Pollution, 9, 61–67. https://doi.org/10.5696/2156-9614-5-9-61.

    Article  Google Scholar 

  • NARSTO. (2003). Particulate matter science for policy makers: A NARSTO assessment. Retrieved July 2, 2003, from http://www.cgenv.com/Narsto/.

  • Nautiyal, J., Garg, M. L., Sharma, M. K., Khan, A. A., Thakur, J. S., & Kumar, R. (2007). Air pollution and cardiovascular health in Mandi-Gobindgarh, Punjab, India—A pilot study. International Journal of Environmental Research and Public Health, 4(4), 268–282.

    CAS  Google Scholar 

  • Necemer, M., Kump, P., Scancar, J., Jacimovic, R., Simcis, J., Pelicon, P., et al. (2008). Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 63(11), 1240–1247.

    Google Scholar 

  • Okoronkwo, N. E., Odomelam, S. A., & Ano, O. A. (2006). Levels of toxic elements in soil of abandoned waste dumpsite. African Journal of Biotechnology, 5(13), 1241–1244.

    CAS  Google Scholar 

  • Olatunji, A. S., Abimbola, A. F., & Afolabi, O. O. (2009). Evaluation of impact of quarrying activities on the quality of soils, groundwater and crops in surrounding communities: Case studies from Orile_Odo and Sekere Villages, South-western Nigeria. Science Focus, 14(1), 39–51.

    Google Scholar 

  • Olatunji, A. S., Kolawole, T. O., Oloruntola, M., & Günter, C. (2018). Evaluation of pollution of soils and particulate matter around metal recycling factories in Southwestern Nigeria. Journal of Health and Pollution, 17, 20–30.

    Google Scholar 

  • Pierre, F., Baruthio, F., Diebold, F., & Biette, P. (1995). Effect of different exposure compounds on urinary kinetics of aluminium and fluoride in industrially exposed workers. Occupational and Environmental Medicine, 52, 396–403.

    CAS  Google Scholar 

  • Priest, N. D. (2004). The biological behaviour and bioavailability of aluminium in man, with special reference to studies employing aluminium-26 as a tracer: Review and study update. Journal of Environmental Monitoring, 6, 375–403.

    CAS  Google Scholar 

  • Radojevic, M., & Bashkin, V. N. (1999). Practical environmental analysis. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long term impact of irrigation with sewage effluents on heavy metals contents in soil, crops and groundwater—A case study. Agriculture, Ecosystems & Environment, 109, 310e–322e.

    Google Scholar 

  • Raun, L., Pepple, K., Hoyt, D., Richner, D., Blanco, A., & Li, J. (2013). Unanticipated potential cancer risk near metal recycling facilities. Environmental Impact Assessment Review, 41, 70–77.

    Google Scholar 

  • Reilly, C. (2002). Metal contamination of food (3rd ed.). Oxford: Blackwell.

    Google Scholar 

  • Rizescu, C. Z., Stoian, E. V., Ittu, C., Ungureanu, D. N., Bacinschi, Z. (2011). Heavy metals dust from electric arc furnace. In International conference on biomedical engineering and technology, IPCBEE (vol. 11, pp. 137–141). Singapore: IACSIT Press.

  • Rose, M., Baxter, M., Brereton, N., & Baskaran, C. (2010). Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Additives and Contaminants: Part A, 27(10), 1380–1404. https://doi.org/10.1080/19440049.2010.496794.

    Article  CAS  Google Scholar 

  • Rosseland, B. O., Eldhuset, T. D., & Staurnes, M. (1990). Environmental effects of aluminium. Environmental Geochemistry and Health, 12(1–2), 17–27. https://doi.org/10.1007/BF01734045.

    Article  CAS  Google Scholar 

  • Saiyed, S. M., & Yokel, R. A. (2005). Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Additives & Contaminants, 22, 234–244.

    CAS  Google Scholar 

  • Sato, K., Suzuki, I., Kubota, H., Furusho, N., Inoue, T., Yasukouchi, Y., et al. (2014). Estimation of daily Aluminium intake in Japan based on food consumption inspection results: Impact of food additives. Food Science & Nutrition, 2(4), 389–397.

    CAS  Google Scholar 

  • Schulin, R., Curchod, F., Mondeshka, M., Daskalova, A., & Keller, A. (2007). Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria). Geoderma, 140(1–2), 52–61.

    CAS  Google Scholar 

  • Scott, D., Keoghan, J. M., & Allen, B. E. (1996). Native and low input grasses—A New Zealand high country perspective. New Zealand Journal of Agricultural Research, 39, 499–512.

    Google Scholar 

  • Sedrowicz, L., Oledzka, R., & Witkowska, D. (1994). Present knowledge on aluminium neurotoxicity. Bromatologia i Chemia Toksykologiczna, 27(4), 307–310.

    CAS  Google Scholar 

  • Senczuk, W. (1990). Toxicology. Warsaw: PZWL.

    Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2006). Heavy metal contamination in vegetables grown in wastewater irrigated area of Varanasi, India. Bulletin of Environmental Contamination and Toxicology, 77, 312–318.

    CAS  Google Scholar 

  • Sikalidis, C., Mitrakas, M., & Tsitouridou, R. (2010). Immobilization of electric arc furnace dust toxic elements within the matrix of concrete based products. Global NEST Journal, 12(4), 368–373.

    Google Scholar 

  • Sikhi-Wiki. (2017). Mandi-Gobindgarh. Retrieved September 28, 2017, from https://www.sikkhiwiki.org/index.php.

  • Singh, R., Chanduka, L., & Dhir, A. (2015). Impacts of stubble burning on ambient air quality of a critically polluted area-Mandi-Gobindgarh. Journal of Pollution Effects and Control, 3(2), 135.

    Google Scholar 

  • Singhal, P., Jha, S. K., Thakur, V. K., & Tripathi, R. M. (2017). Determination of transfer factor of different elements from soil to Fenugreek. NUFT, 1(3), 89–95.

    Google Scholar 

  • Sjogren, B., Elinder, C. G., Iregren, A., McLachlan, D. R. C., & Riihimäki, V. (1997). Occupational aluminum exposure and its health effects. In R. A. Yokel & M. S. Golub (Eds.), Research issues in aluminum toxicity (pp. 17–45). Washington, DC: Taylor and Francis.

    Google Scholar 

  • Sjogren, B., Iregren, A., Elinder, C.-G., Yokel, R. A., Gunnar, F. N., Bruce, A. F., et al. (2007). Aluminum. Handbook on the toxicology of metals (3rd ed., pp. 339–352). Burlington, VT: Academic Press.

    Google Scholar 

  • Sjogren, B., Lidums, V., Håkansson, M., & Hedström, L. (1985). Exposure and urinary excretion of aluminum during welding. Scandinavian Journal of Work, Environment & Health, 11, 39–43.

    CAS  Google Scholar 

  • Soni, M. G., White, S. M., Flamm, W. G., & Burdock, G. A. (2001). Safety evaluation of dietary aluminium. Regulatory Toxicology and Pharmacology, 33, 66–79.

    CAS  Google Scholar 

  • Starska, K. (1993). Aluminium in food. Rocz PZH, 44(1), 55–63.

    CAS  Google Scholar 

  • Tolocka, M. P., Solomon, P. A., Mitchell, W., Norris, G. A., Gemmill, D. B., Wiener, R. W., et al. (2001). A east versus west in the US: Chemical characteristics of PM2.5 during the Winter of 1999. Aerosol Science Technology, 34(1), 88–96.

    CAS  Google Scholar 

  • USEPA-RSL (U.S. Environmental Protection Agency - Regional Screening Levels)—Generic Tables. (2016). Retrieved October 7, 2016, from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016.

  • Vardar, F., & Unal, M. (2007). Aluminium toxicity and resistance in higher plants. Advances in Molecular Biology, 1, 1–12.

    Google Scholar 

  • Vitorello, V. A., Capaldi, F. R. C., & Stefanuto, V. A. (2005). Recent advances in aluminium toxicity and resistance in higher plants. Brazilian Journal of Plant Physiology, 17, 129–143.

    CAS  Google Scholar 

  • Vondrackova, S., Szakova, J., Drabek, O., Tejnecky, V., Hejcman, M., Mullerova, V., et al. (2015). Aluminium uptake and translocation in Al hyper-accumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH. PLoS ONE, 10(4), e0123351. https://doi.org/10.1371/journal.pone.0123351.

    Article  CAS  Google Scholar 

  • Wagatsuma, T. (1983). Effect of non-metabolic conditions on the uptake of aluminium by plant roots. Soil Science and Plant Nutrition, 29(1983), 323–333.

    CAS  Google Scholar 

  • Watanabe, T., Broadley, M. R., Jansen, S., White, P. J., Takada, J., Satake, K., et al. (2007). Evolutionary control of leaf element composition in plants. New Phytologist, 174, 516–523.

    CAS  Google Scholar 

  • Watanabe, T., Misawa, S., Hiradate, S., & Osaki, M. (2008). Characterization of root mucilage from Melastoma malabathricum, with emphasis on its roles in aluminium accumulation. New Phytologist, 178, 581–589.

    CAS  Google Scholar 

  • White, P. J. (2001). The pathways of calcium movement to the xylem. Plant and Soil, 248, 257–268.

    Google Scholar 

  • WHO. (1997). Aluminium. International programme on chemical safety. Environmental Health Criteria 194 Geneva.

  • WHO. (2003). Aluminium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. Geneva.

  • Yang, M., Jiang, L., Huang, H., Zeng, S., Qiu, F., Yu, M., et al. (2014a). Dietary exposure to aluminium and health risk assessment in the residents of Shenzhen, China. PLoS ONE, 9(3), e89715. https://doi.org/10.1371/journal.pone.0089715.

    Article  CAS  Google Scholar 

  • Yang, W., Li, H., Zhang, T., Sen, L., & Ni, W. (2014b). Classification and identification of metal-accumulating plant species by cluster analysis. Environmental Science and Pollution Research, 21(18), 10626–10637. https://doi.org/10.1007/s11356-014-3102-6.

    Article  CAS  Google Scholar 

  • Yokel, R. A., Hicks, C. L., & Florence, R. L. (2008). Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food and Chemical Toxicology, 46(6), 2261–2266. https://doi.org/10.1016/j.fct.2008.03.004.

    Article  CAS  Google Scholar 

  • Yokel, R. A., & McNamara, P. J. (2001). Aluminum toxicokinetics: An update mini-review. Pharmacology and Toxicology, 88, 159–167.

    CAS  Google Scholar 

  • Zaman, K., Zaman, W., & Siddique, H. (1993). Hematological and enzymatic results of aluminium intoxication in rats. Comparative Biochemistry and Physiology - Part C, 105(1), 73–76.

    CAS  Google Scholar 

  • Zhuang, P., Li, Z., Zou, B., Xia, H., & Wang, G. (2013). Heavy metal contamination in soil and soyabean near the Dabaoshan mine, South China. Pedosphere, 23(3), 298–304.

    CAS  Google Scholar 

  • Zurera-Cosano, G., Moreno-Rojas, R., Salmeron, E. J., & Pozo, L. R. (1989). Heavy metal uptake from greenhouse border soils for edible vegetables. Journal of the Science of Food and Agriculture, 49(3), 307–314.

    Google Scholar 

Download references

Acknowledgements

The Post Doctoral Fellowship provided to Dr. Reshu Mandal [Award No F.15-1/2012-13/PDFWM-2012-13-OB-CHA-16486-(SA-II)] by UGC, New Delhi (India) is acknowledged gratefully. We also thank Mr. Tejbir Singh for analysing the vegetable and soil samples on WD-XRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshu Mandal.

Ethics declarations

Conflict of interest

It is declared here that there are no financial, personal and competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, R., Kaur, S. Health concerns on provisional tolerable weekly intake of aluminium in children and adults from vegetables in Mandi-Gobindgarh (India). Environ Geochem Health 42, 2943–2962 (2020). https://doi.org/10.1007/s10653-020-00534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00534-1

Keywords

Navigation