Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes

Abstract

The chemical reactions of dry-disposed ash dump, ingressed oxygen, carbon dioxide, and infiltrating rainwater affect mineralogical transformation, redistribution, and migration of chemical species. Composite samples of weathered coal fly ash taken at various depths and fresh coal fly ash were examined using organic petrographic, X-ray diffraction, X-ray fluorescence techniques, and successive extraction procedures. Results obtained show relative enrichment of glass, Al–Fe-oxides, calcite, and tridymite in the weathered CFA, but the fresh CFA is enriched in mullite, inertinite, maghemite, and ettringite. The enrichment of the weathered CFA in amorphous glass suggests higher reactivity when compared to fresh CFA. The evident depletion of soluble oxides in the weathered CFA is attributed to flushing of the soluble salts by percolating rainwater. Comparative enrichment of examined elements in water-soluble, exchangeable, reducible, and residual fractions of the weathered CFA is partly due to the slow release of adsorbed chemical species from the alumina-silicate matrix and diffusion from the deeper sections of the particles of coal fly ash. Sodium and potassium show enrichment in the oxidisable fraction of fresh CFA. The estimated mobility factor indicates mobility for Ca, Mg, Na, Se, Mo, and Sb and K, Sr, V, Cu, Cr, Se, and B in fresh and weathered CFAs, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C., & Straughan, I. (1980). Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: A review. Journal of Environmental Quality, 9, 333–344.

    CAS  Article  Google Scholar 

  2. Akinyemi, S. A. (2011). Geochemical and mineralogical evaluation of toxic contaminants mobility in weathered coal fly ash: As a case study, Tutuka dump site, South Africa Unpublished Doctoral Thesis, Earth Sciences Department, University of the Western Cape, South Africa.

  3. Akinyemi, S. A., Gitari, W. M., Petrik, L. F., Nyakuma, B. B., Hower, J. C., Ward, C. R., et al. (2019). Environmental evaluation and nano-mineralogical study of fresh and unsaturated weathered coal fly ashes. Science of the Total Environment, 663, 177–188.

    CAS  Article  Google Scholar 

  4. Akinyemi, S., Akinlua, A., Gitari, W., Akinyeye, R., & Petrik, L. (2011a). The leachability of major elements at different stages of weathering in dry disposed coal fly ash. Coal Combustion and Gasification Products, 3, 28–40.

    Article  Google Scholar 

  5. Akinyemi, S., Akinlua, A., Gitari, W., Khuse, N., Eze, P., Akinyeye, R., et al. (2012). Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores. Journal of Environmental Management, 102, 96–107.

    CAS  Article  Google Scholar 

  6. Akinyemi, S., Akinlua, A., Gitari, W., & Petrik, L. (2011b). Mineralogy and mobility patterns of chemical species in weathered coal fly ash. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(8), 768–784.

    CAS  Article  Google Scholar 

  7. Annandale, J. G., Jovanovic, N. Z., Tanner, P. D., Benade, N., & Du Plessis, H. M. (2002). The sustainability of irrigation with gypsiferous mine water and implications for the mining industry in South Africa. Mine Water and the Environment, 21, 81–90.

    CAS  Article  Google Scholar 

  8. Chatterjee, A. K. (2010). Indian fly ashes, their characteristics, and potential for mechano-chemical activation for enhanced usability. In: Utilisation, C.U.a.t.U.o.W.M.C.f.B.-p. (Ed.) Second international conference on sustainable construction materials and technologies, 28 June–30 June 2010. Universita Politecnica delle Marche. Ancona, Italy.

  9. Cheng, T.-W., & Chiu, J. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering, 16(3), 205–210.

    CAS  Article  Google Scholar 

  10. Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven, W. M., & van Deventer, J. S. (2007). The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292(1), 8–20.

    CAS  Article  Google Scholar 

  11. Eskom. (2009). Abridged annual report. Retrieved May 23, 2010, from www.eskom.co.za.

  12. Fatoba, O., & Petrik, L., (2015). Stability of brine components in co-disposed fly ash-brine solid residue. In World of coal ash (WOCA) conference, WOCA, Nashville, Tennasee TN, USA.

  13. Gitari, M., Fatoba, O., Nyamihingura, A., Petrik, L., Vadapalli, V., Nel, J., October, A., Dlamini, L., Gericke, G., & Mahlaba, J. (2009). Chemical weathering in a dry ash dump: An insight from physicochemical and mineralogical analysis of drilled cores. In World of coal ash (WOCA) conference in Lexington, KY, USA.

  14. Gitari, M., Petrik, L., & Reynolds, K. (2011). Chemical weathering in a hypersaline effluent irrigated dry ash dump: An insight from physicochemical and mineralogical analysis of drilled cores. Energy Science and Technology, 2(2), 43–55.

    CAS  Google Scholar 

  15. Haas, C., & Macak, J. (1985). Revegetation using coal ash mixtures. Journal of Environmental Engineering, 111(5), 559.

    CAS  Article  Google Scholar 

  16. Herselman, J. E., (2007). The concentration of selected trace metals in South African soils.Unpublished Ph.D. Thesis, University of Stellenbosch, South Africa.

  17. Hodgson, F. I. D. (1999). Physical properties of the ash generated at the Tutuka Power station. Unpublished report to Eskom.

  18. Hower, J. C. (2012). Petrographic examination of coal-combustion fly ash. International Journal of Coal Geology, 92, 90–97.

    CAS  Article  Google Scholar 

  19. Hower, J. C., Henke, K. R., Dai, S., Ward, C. R., French, D., Liu, S., & Graham, U. M. (2017). Generation and nature of coal fly ash and bottom ash. In Coal Combustion Products (CCP’s) (pp. 21–65). Cambridge: Woodhead Publishing.

  20. Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  21. Kim, A. G. (2006). The effect of alkalinity of Class F PC fly ash on metal release. Fuel, 85(10–11), 1403–1410.

    CAS  Article  Google Scholar 

  22. Matjie, R. H., Li, Z., Ward, C. R., & French, D. (2008). Chemical composition of glass and crystalline phases in coarse coal gasification ash. Fuel, 87(6), 857–869.

    CAS  Article  Google Scholar 

  23. Maya, M., Musekiwa, C., Mthembi, P., & Crowley, M. (2015). Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank), Mpumalanga. South African Journal of Geomatics, 4(2), 174–188.

    Article  Google Scholar 

  24. Menghistu, M. T. (2010). Development of a numerical model for unsaturated/saturated hydraulics in Ash/Brine systems. Unpublished Ph.D. Thesis, University of Free State, South Africa.

  25. Midgley, D. C., Pitman, W. V., & Middleton, B. J. (1994). Surface water resources of South Africa 1990. WRC report no. 298/1.4/94.

  26. Muriithi, G. N., Petrik, L. F., Fatoba, O., Gitari, W. M., Doucet, F. J., Nel, J., et al. (2013). Comparison of CO2 capture by ex situ accelerated carbonation and in in situ naturally weathered coal fly ash. Journal of Environmental Management, 127, 212–220.

    CAS  Article  Google Scholar 

  27. Norrish, K., & Hutton, J. T. (1969). An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta, 33(4), 431–453.

    CAS  Article  Google Scholar 

  28. Ojo, O. I. (2009). Mineralogy and chemical mobility in some weathered ash dump sites, South Africa. Unpublished M.Sc. Thesis, Earth Sciences Department, University of the Western Cape, South Africa.

  29. Petrik, L. F., White, R. A., Klink, M. J., Somerset, V. S., Burgers, C. L., & Fey, M. V. (2003). Utilization of South African fly ash to treat acid coal mine drainage, and production of high quality zeolites from the residual solids. In Proceedings of the ash utilization symposium, Lexington, KY, USA.

  30. Quispe, D., Pérez-López, R., Silva, L. F., & Nieto, J. M. (2012). Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel, 94, 495–503.

    CAS  Article  Google Scholar 

  31. Rietveld, H. A. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.

    CAS  Article  Google Scholar 

  32. Silva, L. F., Ward, C. R., Hower, J. C., Izquierdo, M., Waanders, F., Oliveira, M., et al. (2010). Mineralogy and leaching characteristics of coal ash from a major Brazilian power plant. Coal Combustion and Gasification Products, 2, 51–65.

    Article  Google Scholar 

  33. Soong, Y., Fauth, D., Howard, B., Jones, J., Harrison, D., Goodman, A., et al. (2006). CO2 sequestration with brine solution and fly ashes. Energy Conversion and Management, 47(13–14), 1676–1685.

    CAS  Article  Google Scholar 

  34. Taylor, J. (1991). Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, 6(1), 2–9.

    CAS  Article  Google Scholar 

  35. Tokalioğlu, Ş., Kartal, Ş., & Birol, G. (2003). Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turkish Journal of Chemistry, 27(3), 333–346.

    Google Scholar 

  36. Varnavas, S. P. (2010). Medical geochemistry, a key in the precautionary measures against the development of cancer and other diseases (pp. 234–246). XlIII: Bulletin Geological Society of Greece.

    Google Scholar 

  37. Varnavas, S. P. (2016). Manganese in drinking water and human health. A case study from Greece. International Journal of Global Environmental Issues, 15(1/2), 112–120.

    Article  Google Scholar 

  38. Varnavas, S. P., Kalavrouziotis, I. K., Karaberou, G., Apostolopoulou, K. A., & Varnavas, P. S. (2012). Medical geochemical investigations in taking precautionary measures against diseases. Protection of Human Health Global NEST Journal, 14(4), 505–515.

    Google Scholar 

  39. Ward, C. R., & French, D. (2006). Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel, 85(16), 2268–2277.

    CAS  Article  Google Scholar 

  40. Ward, C. R., French, D., Stephenson, L., Riley, K., & Li, Z. (2009). Evaluating the interaction of coal ash leachates with rock materials for mine backfill studies. In 2009 World of Coal Ash (WOCA) Conference - May 4–7, 2009 in Lexington, KY, USA (pp. 1–13).

  41. Warren, C., & Dudas, M. (1985). Formation of secondary minerals in artificially weathered fly ash 1. Journal of Environmental Quality, 14(3), 405–410.

    CAS  Article  Google Scholar 

  42. White, S., & Case, E. (1990). Characterization of fly ash from coal-fired power plants. Journal of Materials Science, 25(12), 5215–5219.

    CAS  Article  Google Scholar 

  43. Zachariasen, W. H. (1932). The atomic arrangement in glass. Journal of the American Chemical Society, 54(10), 3841–3851.

    CAS  Article  Google Scholar 

  44. Zevenbergen, C., Bradley, J. P., van Reeuwijk, L. P., & Shyam, A. K. (1999). Clay formation during weathering of alkaline coal fly ash. In 1999 International ash utilization symposium, Center for Applied Energy Research, University of Kentucky, Paper #14.

  45. Zevenbergen, C., Wood, T. V., Bradley, J. P., Van Der Broeck, P. F. C. W., Orbons, A. J., & Van Reeuwijk, L. P. (1994). Morphological and chemical properties of MSWI bottom ash with respect to the glassy constituents. Hazardous Waste and Hazardous Materials, 11(3), 371–383.

    CAS  Article  Google Scholar 

  46. Zhang, L., Ahmari, S., & Zhang, J. (2011). Synthesis and characterization of fly ash modified mine tailings-based geopolymers. Construction and Building Materials, 25(9), 3773–3781.

    Article  Google Scholar 

  47. Zheng, L., Wang, W., & Shi, Y. (2010). The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere, 79(6), 665–671.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully recognise Ms Riana Rossouw at the Central Analytical Facility of Stellenbosch University (South Africa) for the ICP-MS/AES analysis and University of Venda Prof Gitari DHET Research Incentive funds for financial support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to S. A. Akinyemi or L. F. O. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akinyemi, S.A., Gitari, W.M., Thobakgale, R. et al. Geochemical fractionation of hazardous elements in fresh and drilled weathered South African coal fly ashes. Environ Geochem Health 42, 2771–2788 (2020). https://doi.org/10.1007/s10653-019-00511-3

Download citation

Keywords

  • Weathered ash
  • Fresh ash
  • Organic petrography
  • Sequential extraction
  • Metal mobility
  • And mineral transformations