Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece

Abstract

The presence of phosphorus (P) and heavy metals (HMs) in surface sediments originating from lakes Volvi, Kerkini, and Doirani (N. Greece), as well as their fractionation patterns, were investigated. No statistically significant differences in total P content were observed among the studied lakes, but notable differences were observed among sampling periods. HM contents in all lakes presented a consistent trend, i.e., Mn > Cr > Zn > Pb > Ni > Cu > Cd, while the highest concentrations were recorded in Lake Kerkini. Most of the HMs exceeded probable effect level value indicating a probable biological effect, while Ni in many cases even exceeded threshold effects level, suggesting severe toxic effects. P was dominantly bound to metal oxides, while a significant shift toward the labile fractions was observed during the spring period. The sum of potentially bioavailable HM fractions followed a downward trend of Mn > Cr > Pb > Zn > Cu > Ni > Cd for most lakes. The geoaccumulation index Igeo values of Cr, Cu, Mn, Ni, and Zn in all lakes characterized the sediments as “unpolluted,” while many sediments in lakes Volvi and Kerkini were characterized as “moderately to heavily polluted” with regard to Cd. The descending order of potential ecological risk \(E_{\text{r}}^{i}\) was Cd > Pb > Cu > Ni > Cr > Zn > Mn for all the studied lakes. Ni and Cr presented the highest toxic risk index values in all lake sediments. Finally, the role of mineralogical divergences among lake sediments on the contamination degree was signified.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alomary, A. A., & Belhadj, S. (2007). Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environmental Monitoring and Assessment, 135(1–3), 265–280.

    CAS  Google Scholar 

  2. Alvarez, M. B., Malla, M. E., & Batistoni, D. A. (2001). Comparative assessment of two sequential chemical extraction schemes for the fractionation of cadmium, chromium, lead and zinc in surface coastal sediments. Analytical and Bioanalytical Chemistry, 369(1), 81–90.

    CAS  Google Scholar 

  3. Atkinson, C. A., Jolley, D. F., & Simpson, S. L. (2007). Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere, 69(9), 1428–1437.

    CAS  Google Scholar 

  4. Batley, G. E., & Gardner, D. (1978). A study of copper, lead and cadmium speciation in some estuarine and coastal marine waters. Estuarine and Coastal Marine Science, 7(1), 59–70.

    CAS  Google Scholar 

  5. Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., et al. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health, 39, 611–634.

    CAS  Google Scholar 

  6. Cavalcante, H., Araújo, F., Noyma, N. P., & Becker, V. (2018). Phosphorus fractionation in sediments of tropical semiarid reservoirs. Science of the Total Environment, 619–620, 1022–1029.

    Google Scholar 

  7. CCME. (2002). Canadian Council of Ministers of the Environment, 2002. Winnipeg: Canadian Environmental Quality Guidelines.

    Google Scholar 

  8. Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440, https://doi.org/10.1016/j.chemosphere.2006.09.030.

    CAS  Article  Google Scholar 

  9. Chen, Y.-M., Gao, J.-B., Yuan, Y.-Q., Ma, J., & Yu, S. (2016). Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Continental Shelf Research, 124, 125–133.

    Google Scholar 

  10. Cheng, H., Li, M., Zhao, C., Yang, K., Li, K., Peng, M., et al. (2015). Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. Journal of Geochemical Exploration, 157, 15–26.

    CAS  Google Scholar 

  11. Christophoridis, C., & Fytianos, K. (2006). Conditions affecting the release of phosphorus from surface lake sediments. Journal of Environmental Quality, 35(4), 1181–1192.

    CAS  Google Scholar 

  12. Cook, H. E., Johnson, P. D., Matti, J. C., & Zemmels, I. (1975). Methods of sample preparation and X-ray diffraction data analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. In D. E. Hayes, L. A. Frakes, et al. (Eds.), Init. Repts. DSDP (pp. 999-1007). 28: Washington (U.S. Govt. Printing Office).

  13. Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64(3), 197–214.

    CAS  Google Scholar 

  14. de Groot, C. J., & Golterman, H. L. (1990). Sequential fractionation of sediment phosphate. Hydrobiologia, 192(2–3), 143–148.

    Google Scholar 

  15. Filipek, L. H., & Owen, R. M. (1979). Geochemical associations and grain-size partitioning of heavy metals in lacustrine sediments. Chemical Geology, 26(1–2), 105–117.

    CAS  Google Scholar 

  16. Forstner, U., & Whitman, G. T. W. (1981). Metal pollution in the aquatic environment (p. 486). Berlin: Springer.

    Google Scholar 

  17. Francke, A., Wagner, B., Leng, M. J., et al. (2013). A late glacial to holocene record of environmental change from Lake Dojran (Macedonia, Greece). Climate of the Past, 9, 481–498.

    Google Scholar 

  18. Fu, J., Zhao, C., Luo, Y., Liu, C., Liu, C., Kyzas, G., et al. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.

    CAS  Google Scholar 

  19. Fytianos, K., & Kotzakioti, A. (2005). Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environmental Monitoring and Assessment, 100(1–3), 191–200.

    CAS  Google Scholar 

  20. Fytianos, K., & Lourantou, A. (2004). Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environment International, 30(1), 11–17.

    CAS  Google Scholar 

  21. Gantidis, N., Pervolarakis, M., & Fytianos, K. (2007). Assessment of the quality characteristics of two lakes (Koronia and Volvi) of N. Greece. Environmental Monitoring and Assessment, 125, 175–181.

    CAS  Google Scholar 

  22. Gasparatos, D., Massas, I., & Godelitsas, A. (2019). Fe–Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps. CATENA, 182, 104106.

    CAS  Google Scholar 

  23. Guo, W., Huo, S., Xi, B., Zhang, J., & Wu, F. (2015). Heavy metal contamination in sediments from typical lakes in the five geographic regions of China: Distribution, bioavailability, and risk. Ecological Engineering, 81, 243–255.

    Google Scholar 

  24. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  25. Holdren, G. C., Jr., & Armstrong, D. E. (1980). Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology, 14(1), 79–87.

    Google Scholar 

  26. Huang, J. J., Wang, C., Fang, B., Feng, L., Fang, F., Li, Z., et al. (2017). Characterization of phosphorus fractions in the soil of water-level-fluctuation zone and unflooded bankside in Pengxi River, Three Gorges Reservoir. Huanjing Kexue/Environmental Science, 38(9), 3673–3681.

    Google Scholar 

  27. Hupfer, M., Gächter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences, 57(4), 305–324.

    Google Scholar 

  28. ISO. (2004). ISO 6878:2004 water quality—Determination of phosphorus—Ammonium molybdate spectrometric method.

  29. Jain, C. K. (2004). Metal fractionation study on bed sediments of River Yamuna, India. Water Research, 38(3), 569–578. https://doi.org/10.1016/j.watres.2003.10.042.

    CAS  Article  Google Scholar 

  30. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment, 141(1), 35–47. https://doi.org/10.1007/s10661-007-9876-y.

    CAS  Article  Google Scholar 

  31. Jain, C. K., Gurunadha-Rao, V. V. S., Prakash, B. A., Mahesh-Kumar, K., & Yoshida, M. (2010). Metal fractionation study on bed sediments of Hussainsagar Lake, Hyderabad, India. Environmental Monitoring and Assessment, 166(1–4), 57–67.

    CAS  Google Scholar 

  32. Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere, 46(8), 1147–1155.

    CAS  Google Scholar 

  33. Kalogridi, E.-C., Christophoridis, C., Bizani, E., Drimaropoulou, G., & Fytianos, K. (2014). Part II: Temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: Application of an optimized MAE–LC–MS/MS pretreatment and analytical method. Environmental Science and Pollution Research, 21, 7252–7262.

    CAS  Google Scholar 

  34. Li, F., Huang, J., Zeng, G., Yuan, X., Li, X., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration, 132, 75–83.

    CAS  Google Scholar 

  35. Li, F., Zhang, J., Liu, C., Xiao, M., & Wu, Z. (2018). Distribution, bioavailability and probabilistic integrated ecological risk assessment of heavy metals in sediments from Honghu Lake, China. Process Safety and Environmental Protection, 116, 169–179.

    CAS  Google Scholar 

  36. Li, Y., Wang, X. L., Huang, G. H., Zhang, B. Y., & Guo, S. H. (2009). Adsorption of Cu and Zn onto Mn/Fe oxides and organic materials in the extractable fractions of river surficial sediments. Soil and Sediment Contamination: An International Journal, 18(1), 87–101.

    Google Scholar 

  37. Lopez, D. L., Gierlowski-Kordesch, E., & Hollenkamp, C. (2010). Geochemical mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water, Air, and Soil Pollution, 213, 27–45.

    CAS  Google Scholar 

  38. Luo, Y. M., & Christie, P. (1998). Choice of extraction technique for soil reducible trace metals determines the subsequent oxidisable metal fraction in sequential extraction schemes. International Journal of Environmental Analytical Chemistry, 72(1), 59–75.

    CAS  Google Scholar 

  39. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater systems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    CAS  Google Scholar 

  40. Modak, D. P., Singh, K. P., Chandra, H., & Ray, P. K. (1992). Mobile and bound forms of trace metals in sediments of the lower ganges. Water Research, 26(11), 1541–1548. https://doi.org/10.1016/0043-1354(92)90075-F.

    CAS  Article  Google Scholar 

  41. Muller, G. (1979). Schwermetalle in den sedimenten des Rheins–Vera Enderungenseit. Umschau, 79, 778–783.

    Google Scholar 

  42. Nixdorf, B., Rektins, A., & Mischke, U. (2008). Standards and thresholds of the EU water framework directive (WFD)—phytoplankton and lakes. In M. Schmidt, J. Glasson, L. Emmelin, & H. Helbron (Eds.), Standards and thresholds for impact assessment (pp. 301–314). Berlin: Springer.

    Google Scholar 

  43. Ovakoglou, G., Alexandridis, T. K., Crisman, T. L., Skoulikaris, C., & Vergos, G. S. (2016). Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. International Journal of Applied Earth Observation and Geoinformation, 51, 37–46.

    Google Scholar 

  44. Pardo, P., López-Sánchez, J. F., & Rauret, G. (1998). Characterisation, validation and comparison of three methods for the extraction of phosphate from sediments. Analytica Chimica Acta, 376(2), 183–195.

    CAS  Google Scholar 

  45. Pertsemli, E., & Voutsa, D. (2007). Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece. Journal of Hazardous Materials, 148(3), 529–537.

    CAS  Google Scholar 

  46. Psenner, R., Boström, B., Dinka, M., Pettersson, K., Pucsko, R., & Sager, M. (1988). Fractionation of phosphorus in suspended matter and sediment. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie, 30, 98–103.

    Google Scholar 

  47. Ranjbar, Jafarabadi A., Riyahi, Bakhtiyari A., Shadmehri, Toosi A., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185(2017), 1090–1111.

    Google Scholar 

  48. Rath, P., Panda, U. C., Bhatta, D., & Sahu, K. C. (2009). Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—A case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials, 163(2), 632–644. https://doi.org/10.1016/j.jhazmat.2008.07.048.

    CAS  Article  Google Scholar 

  49. Ribeiro, D. C., Martins, G., Nogueira, R., Cruz, J. V., & Brito, A. G. (2008). Phosphorus fractionation in volcanic lake sediments (Azores—Portugal). Chemosphere, 70(7), 1256–1263.

    CAS  Google Scholar 

  50. Roig, N., Sierra, J., Moreno-Garrido, I., Nieto, E., Gallego, E. P., Schuhmacher, M., et al. (2016). Metal bioavailability in freshwater sediment samples and their influence on ecological status of river basins. Science of the Total Environment, 540, 287–296.

    CAS  Google Scholar 

  51. Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34(7), 2037–2042.

    CAS  Google Scholar 

  52. Samanidou, V., & Fytianos, K. (1987). Partitioning of heavy metals into selective chemical fractions in sediments from rivers in northern Greece. The Science of the Total Environment, 67(2–3), 279–285.

    CAS  Google Scholar 

  53. Scheibye, K., Weisser, J., Borggaard, O. K., Larsen, M. M., Holm, P. E., Vammen, K., et al. (2014). Sediment baseline study of levels and sources of polycyclic aromatic hydrocarbons and heavy metals in Lake Nicaragua. Chemosphere, 95, 556–565.

    CAS  Google Scholar 

  54. Selvam, A. P., Priya, S. L., Banerjee, K., Hariharan, G., Purvaja, R., & Ramesh, R. (2013). Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake Southwest Coast of India. Environmental Monitoring and Assessment, 184, 5899–5915.

    Google Scholar 

  55. Singovszka, E., Junakova, N., & Balintova, M. (2016). The effect of sediment grain size on heavy metal content in different depth in water reservoir Ruzin, Slovakia. Solid State Phenomena, 244, 240–245.

    Google Scholar 

  56. Spagnoli, F., & Andresini, A. (2018). Biogeochemistry and sedimentology of Lago di Lesina (Italy). Science of the Total Environment, 643, 868–883.

    CAS  Google Scholar 

  57. Stefanidis, P., & Stefanidis, S. (2012). Reservoir sedimentation and mitigationmeasures. Lakes and Reservoirs Research and Management, 17(2), 113–117.

    Google Scholar 

  58. Stefanidis, P., Stefanidis, S., & Tziaftani, F. (2011). The threat of alluviation of lakes resulting from torrents (case study: Lake Volvi, north Greece). International Journal of Sustainable Development and Planning, 6(3), 325–333.

    Google Scholar 

  59. Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.

    CAS  Google Scholar 

  60. Tang, Z. W., Yue, Y., & Cheng, J. L. (2009). Pollution characteristics and risks of heavy metals in the sediments from the middle and small rivers in Wuhan. Journal of Soil and Water Conservation, 23, 132–136.

    Google Scholar 

  61. Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    CAS  Google Scholar 

  62. Thomas, R. P., Ure, A. M., Davidson, C. M., Littlejohn, D., Rauret, G., Rubio, R., et al. (1994). Three-stage sequential extraction procedure for the determination of metals in river sediments. Analytica Chimica Acta, 286(3), 423–429. https://doi.org/10.1016/0003-2670(94)85088-7.

    CAS  Article  Google Scholar 

  63. Tian, Y., Zhang, H., Hao, H., Cui, S., Zhang, L., Zhao, L., et al. (2017). Relationships between phosphorus fractionations in sediments and phosphorus in overlying water in a constructed wetland: Impact of macrophytes. Desalination and Water Treatment, 84, 180–189.

    CAS  Google Scholar 

  64. Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566.

    Google Scholar 

  65. Union, E. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. 2000/60/EC. E. Union.

  66. Vogler, P. (1965). Probleme der Phosphatanalytik in der Limnologie und ein neues Verfahren zur Bestimmung von gelöstem Orthophosphat neben kondensierten Phosphaten und organischen Phosphorsäureestern. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 50(1), 33–48.

    CAS  Google Scholar 

  67. Vouvé, F., Buscail, R., Aubert, D., Labadie, P., Chevreuil, M., Canal, C., et al. (2014). Bages-Sigean and Canet-St Nazaire lagoons (France): Physico-chemical characteristics and contaminant concentrations (Cu, Cd, PCBs and PBDEs) as environmental quality of water and sediment. Environmental Science and Pollution Research, 21(4), 3005–3020. https://doi.org/10.1007/s11356-013-2229-1.

    CAS  Article  Google Scholar 

  68. Vrhovnik, P., Smuc, N. R., Dolenec, T., Serafimovski, T., & Dolenec, M. (2013). An evaluation of trace metal distribution and environmental risk in sediments from the Lake Kalimanci (FYR Macedonia). Environmental Earth Sciences, 70, 761–775.

    CAS  Google Scholar 

  69. Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake Shandong, East China. CATENA, 125, 200–205.

    CAS  Google Scholar 

  70. Water, G. M. O. E.-S. S. F. (2014a). River basin management plan for Eastern Macedonia.

  71. Water, G. M. O. E.-S. S. F. (2014b). River basin management plan for central Macedonia.

  72. Wong, C. S. C., Wu, S. C., Duzgoren-Aydin, N. S., Aydin, A., & Wong, M. H. (2007). Trace metal contamination of sediments in an e-waste processing village in China. Environmental Pollution, 145(2), 434–442. https://doi.org/10.1016/j.envpol.2006.05.017.

    CAS  Article  Google Scholar 

  73. Yu, S., & Li, X.-D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution, 159, 1317–1326.

    Google Scholar 

  74. Yu, T., Zhang, Y., Meng, W., & Hu, X. N. (2012). Characterization of heavy metals in water and sediments in Taihu Lake, China. Environmental Monitoring and Assessment, 184, 4367–4382.

    Google Scholar 

  75. Zacharias, I., Bertachas, I., Skoulikidis, N., et al. (2002). Greek Lakes: Limnological overview. Lakes and Reservoirs: Research and Management, 7, 55–62.

    CAS  Google Scholar 

  76. Zakir, H. M., Shikazono, N., & Otomo, K. (2008). Geochemical distribution of trace metals and assessment of anthrapogenic pollution in sediments of Old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 6, 661–672.

    Google Scholar 

  77. Zhang, G., Bai, J., Zhao, Q., Lu, Q., Jia, J., & Wen, X. (2016). Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, 69, 331–339.

    CAS  Google Scholar 

  78. Zhang, Y., Han, Y., Yang, J., Zhu, L., & Zhong, W. (2017). Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines. Journal of Environmental Sciences, 62, 31–38.

    Google Scholar 

  79. Zhang, Z., Liu, Y. L., & Duan, X. J. (2006). Research on remarkable affecting factors of phosphorus releasing from sediment in Shuanglong Lake. Journal of Plant Resources and Environment, 15(2), 16–19.

    Google Scholar 

  80. Zhou, Q., Gibson, C. E., & Zhu, Y. (2000). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere, 42(2), 221–225.

    Google Scholar 

  81. Zhu, Y., Zou, X., Feng, S., & Tang, H. (2006). The effect of grain size on the Cu, Pb, Ni, Cd speciation and distribution in sediments: A case study of Dongping Lake, China. Environmental Geology, 50(5), 753–759.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christophoros Christophoridis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1159 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Christophoridis, C., Evgenakis, E., Bourliva, A. et al. Concentration, fractionation, and ecological risk assessment of heavy metals and phosphorus in surface sediments from lakes in N. Greece. Environ Geochem Health 42, 2747–2769 (2020). https://doi.org/10.1007/s10653-019-00509-x

Download citation

Keywords

  • Phosphorus
  • Heavy metals
  • Lake sediments
  • Speciation
  • Pollution indicators