Skip to main content

Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica

Abstract

Groundwater pollution in tropical and human-altered coastal landscapes is receiving novel attention due to decreasing in annual recharge as a consequence of recurrent droughts and overexploitation, whereby saline intrusion, point and diffuse source contamination, and water conflicts are common denominators. This study presents a detailed groundwater evaluation in a coastal aquifer within the central Pacific coast of Costa Rica. Three sampling campaigns including major ions, heavy metals, and fecal coliform analyses were conducted between July 2013 and March 2014 across 17 wells within the alluvial and fissured units of the Jacó aquifer. The groundwater system is classified as mixed HCO3–Ca2+–Mg2+ type. Coliforms presence was found in two wells, nearby Mona Creek headwaters and near the coastal line. Heavy metal concentrations were below quantification limits in most of the wells; however, chromium concentrations up to 6.56 μg/L were quantified within the coastal line and central portion of the alluvial aquifer in 20 out of the 48 samples. The spatial distribution of major ions (K+, Na+, Ca2+, Mg2+, Cl, SO42−, and HCO3) exhibited an increasing trend towards the central portion of the alluvial aquifer, which may be potentially associated with the large unregulated urban expansion, invoking a need of a continuous water quality monitoring program in this touristic hot spot. This study provides useful information for other similar coastal aquifers in Central America, whereby increasing population growth and unregulated touristic, industrial, and agricultural activities are posing a truly challenge to ensure water security and sustainability parallel to the economic development in a changing climate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abboud, I. A. (2018). Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health, 40(4), 1405–1435. https://doi.org/10.1007/s10653-017-0064-x.

    CAS  Article  Google Scholar 

  • Agudelo, C. (2005). Diagnóstico de las aguas subterráneas en las hojas Tárcoles, Herradura y Candelaria. San José, Costa Rica: Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).

  • Ahmadi, S., Jahanshahi, R., & Moeini, V. (2018). Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area Iran. Environmental Earth Sciences,77(5), 1–13. https://doi.org/10.1007/s12665-018-7393-7.

    CAS  Article  Google Scholar 

  • Ansari, J. A., & Umar, R. (2019). Evaluation of hydrogeochemical characteristics and groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh, India. HydroResearch,1, 36–47. https://doi.org/10.1016/j.hydres.2019.01.001.

    Article  Google Scholar 

  • Arellano, F., & Vargas, A. (2011). Casos de contaminación por intrusión salina en acuíferos costeros de la Península de Nicoya (Costa Rica). Revista Geológica de América Central. https://doi.org/10.15517/rgac.v0i25.8540

  • Arias, M. (1996). Evaluación del riesgo de contaminación del acuífero de Jacó, Cantón de Garabito, Puntarenas. San José, Costa Rica: Servicio Nacional de Aguas Subterráneas, Riego y Avenamiento (SENARA).

  • Arias-Salguero, M. E. (2002). Aplicaciones geofísicas a la hidrogeología en Costa Rica. Revista Geológica de América Central,27, 11–20. https://doi.org/10.15517/rgac.v0i27.7800.

    Article  Google Scholar 

  • Arias-Salguero, M. E., & Vargas, A. (2003). Geofísica aplicada al problema de la intrusión salina en los acuíferos costeros de Costa Rica. In J. A. López-Geta, J. Dios-Gómez, J. A. Orden, G. Ramos, & L. Rodríguez (Eds.), Tecnología de la intrusión de agua de mar en acuíferos costeros: países mediterráneos (pp. 163–167). Madrid: IGME.

    Google Scholar 

  • Aris, A. Z., Abdullah, M. H., Praveena, S. M., Yusoff, M. K., & Juahir, H. (2010). Extenuation of saline solutes in shallow aquifer of a small tropical island: A case study of Manukan Island North Borneo. Environment Asia,3(2), 84–92. https://doi.org/10.14456/ea.2010.45.

    Article  Google Scholar 

  • Babcock, M., Wong-Parodi, G., Small, M. J., & Grossmann, I. (2016). Stakeholder perceptions of water systems and hydro-climate information in Guanacaste Costa Rica. Earth Perspectives,3(1), 3. https://doi.org/10.1186/s40322-016-0035-x.

    Article  Google Scholar 

  • Calderón-Sánchez, H., & Madrigal-Solís, H & Reynolds-Vargas, J. (2002). Contaminación química y microbiológica del agua subterránea en la zona costera de Guanacaste. In J. Reynolds-Vargas (Ed.), Manejo Sostenible de las aguas subterráneas: un reto para el futuro (pp. 33–48). Costa Rica: UNED.

    Google Scholar 

  • Carretero, S., & Kruse, E. (2015). Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province Argentina. Environmental Earth Sciences,73(5), 1983–1995. https://doi.org/10.1007/s12665-014-3546-5.

    CAS  Article  Google Scholar 

  • Chandrasekar, N., Selvakumar, S., Srinivas, Y., John Wilson, J. S., Simon Peter, T., & Magesh, N. S. (2014). Hydrogeochemical assessment of groundwater quality along the coastal aquifers of southern Tamil Nadu India. Environmental Earth Sciences,71(11), 4739–4750. https://doi.org/10.1007/s12665-013-2864-3.

    CAS  Article  Google Scholar 

  • Chebotarev, I. (1955). Metamorphism of natural waters in the crust of weathering—1. Geochimica et Cosmochimica Acta,8(1–2), 22–48. https://doi.org/10.1016/0016-7037(55)90015-6.

    CAS  Article  Google Scholar 

  • Chen, Y., Wang, L., Liang, T., Xiao, J., & Li, J. (2019). Major ion and dissolved heavy metal geochemistry, distribution, and relationship in the overlying water of Dongting Lake China. Environmental Geochemistry and Health,41(3), 1091–1104. https://doi.org/10.1007/s10653-018-0204-y.

    CAS  Article  Google Scholar 

  • Custodio, E., & Llamas, M. R. (2001). Hidrología subterránea (2nd ed.). Barcelona: Ediciones Omega.

    Google Scholar 

  • de Garabito, M. (2007). Plan Regulador Urbano de la Ciudad de Jacó. San José, Costa Rica: Municipalidad de Garabito.

    Google Scholar 

  • Dias, J. A., Cearreta, A., Isla, F. I., & de Mahiques, M. M. (2013). Anthropogenic impacts on Iberoamerican coastal areas: Historical processes, present challenges, and consequences for coastal zone management. Ocean & Coastal Management,77, 80–88. https://doi.org/10.1016/j.ocecoaman.2012.07.025.

    Article  Google Scholar 

  • Dieng, N. M., Orban, P., Otten, J., Stumpp, C., Faye, S., & Dassargues, A. (2017). Temporal changes in groundwater quality of the Saloum coastal aquifer. Journal of Hydrology: Regional Studies,9, 163–182. https://doi.org/10.1016/j.ejrh.2016.12.082.

    Article  Google Scholar 

  • Edokpayi, J. N., Enitan, A. M., Mutileni, N., & Odiyo, J. O. (2018). Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province South Africa. Chemistry Central Journal,12(2), 1–16. https://doi.org/10.1186/s13065-017-0369-y.

    CAS  Article  Google Scholar 

  • Esquivel-Hernández, G., Sánchez-Murillo, R., Birkel, C., & Boll, J. (2018). Climate and water conflicts coevolution from tropical development and hydro-climatic perspectives: A case study of Costa Rica. JAWRA Journal of the American Water Resources Association,54(2), 451–470. https://doi.org/10.1111/1752-1688.12617.

    Article  Google Scholar 

  • Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change. https://doi.org/10.1038/nclimate1413.

    Article  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, NJ: Prentice-Hall Inc.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science,170(3962), 1088–1090. https://doi.org/10.1126/science.170.3962.1088.

    CAS  Article  Google Scholar 

  • Gómez-Cruz, A., Madrigal-Solís, H., Núñez-Solís, C., Calderón-Sánchez, H., & Jiménez-Gavilán, P. (2019). Vulnerabilidad hidrogeológica en la zona costera de Jacó, Pacífico Central, Costa Rica. Revista Geográfica de América Central.,2(63), 141–163. https://doi.org/10.15359/rgac.63-2.6.

    Article  Google Scholar 

  • Helsel, D. R. (2011). Statistics for censored environmental data using Minitab® and R. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118162729.

    Book  Google Scholar 

  • Isa, N. M., Aris, A. Z., & Sulaiman, W. N. A. W. (2012). Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Science of The Total Environment,438, 414–425. https://doi.org/10.1016/j.scitotenv.2012.08.069.

    CAS  Article  Google Scholar 

  • Isla, F. I. (2013). From touristic villages to coastal cities: The costs of the big step in Buenos Aires. Ocean & Coastal Management,77, 59–65. https://doi.org/10.1016/j.ocecoaman.2012.02.005.

    Article  Google Scholar 

  • Khairy, H., & Janardhana, M. R. (2014). Hydrogeochemistry and quality of groundwater of coastal unconfined aquifer in Amol-Ghaemshahr plain, Mazandaran Province Northern Iran. Environmental Earth Sciences,71(11), 4767–4782. https://doi.org/10.1007/s12665-013-2868-z.

    CAS  Article  Google Scholar 

  • Kshetrimayum, K. S., & Hegeu, H. (2016). The state of toxicity and cause of elevated Iron and Manganese concentrations in surface water and groundwater around Naga Thrust of Assam-Arakan basin Northeastern India. Environmental Earth Sciences,75(7), 604. https://doi.org/10.1007/s12665-016-5372-4.

    CAS  Article  Google Scholar 

  • Kuzdas, C., Wiek, A., Warner, B., Vignola, R., & Morataya, R. (2014). Sustainability appraisal of water governance regimes: The case of Guanacaste Costa Rica. Environmental Management,54(2), 205–222. https://doi.org/10.1007/s00267-014-0292-0.

    Article  Google Scholar 

  • Li, Z., Wang, G., Wang, X., Wan, L., Shi, Z., Wanke, H., et al. (2018). Groundwater quality and associated hydrogeochemical processes in Northwest Namibia. Journal of Geochemical Exploration,186, 202–214. https://doi.org/10.1016/j.gexplo.2017.12.015.

    CAS  Article  Google Scholar 

  • Lu, Y., Tang, C., Chen, J., & Yao, H. (2016). Assessment of major ions and heavy metals in groundwater: A case study from Guangzhou and Zhuhai of the Pearl River Delta China. Frontiers of Environmental Science,10(2), 340–351. https://doi.org/10.1007/s11707-015-0513-8.

    CAS  Article  Google Scholar 

  • Solís, H., Fonseca-Sánchez, A., Calderón-Sánchez, H., Gómez-Cruz, A., & Nuñez-Solís, C. (2019). Design of a monitoring network as a participative management tool: Physical and chemical quality of groundwater in three sub-basins in the Central Valley of Costa Rica. Uniciencia,33(1), 43–60. https://doi.org/10.15359/ru.33-1.4.

    Article  Google Scholar 

  • Mangimbulude, J. C., Goeltom, M. T., van Breukelen, B. M., van Straalen, N. M., & Röling, W. F. M. (2016). Hydrochemical characterization of a tropical, coastal aquifer affected by landfill leachate and seawater intrusion. Asian Journal of Water, Environment and Pollution,13(4), 49–57. https://doi.org/10.3233/AJW-160038.

    CAS  Article  Google Scholar 

  • Mena-Rivera, L., & -Vega, J. (2018). Assessment of drinking water suitability in low income rural areas: A case study in Sixaola, Costa Rica. Journal of Water and Health,16(3), 403–413. https://doi.org/10.2166/wh.2018.203.

    Article  Google Scholar 

  • Michael, H. A., Post, V. E. A., Wilson, A. M., & Werner, A. D. (2017). Science, society, and the coastal groundwater squeeze. Water Resources Research. https://doi.org/10.1002/2017WR020851.

    Article  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). Essex, England: Pearson Education.

    Google Scholar 

  • Ministerio, de, Salud, de Costa Rica (, MINSA, & ). (2015). Reglamento para la calidad del agua potable: decreto 38924-S. La Gaceta,170, 1–49.

    Google Scholar 

  • Modibo, A., & Xueyu, L. (2018). Heavy metals and nitrate to validate groundwater sensibility assessment based on DRASTIC models and GIS: Case of the upper Niger and the Bani basin in Mali. Journal of African Earth Sciences,147, 199–210. https://doi.org/10.1016/j.jafrearsci.2018.06.019.

    CAS  Article  Google Scholar 

  • Moore, W. S. (2010). The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science,2(1), 59–88. https://doi.org/10.1146/annurev-marine-120308-081019.

    Article  Google Scholar 

  • Motevalli, A., Moradi, H. R., & Javadi, S. (2018). A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). Journal of Hydrology,557, 753–773. https://doi.org/10.1016/j.jhydrol.2017.12.047.

    CAS  Article  Google Scholar 

  • Mtoni, Y., Mjemah, I. C., Bakundukize, C., Van Camp, M., Martens, K., & Walraevens, K. (2013). Saltwater intrusion and nitrate pollution in the coastal aquifer of Dar es Salaam Tanzania. Environmental Earth Sciences,70(3), 1091–1111. https://doi.org/10.1007/s12665-012-2197-7.

    CAS  Article  Google Scholar 

  • Instituto Nacional de Estadística y Censos (INEC). (2011). X Censo Nacional de Población y VI de Vivienda: Resultados Generales. San José: Instituto Nacional de Estadística y Censos.

    Google Scholar 

  • Ngasala, T. M., Masten, S. J., & Phanikumar, M. S. (2019). Science of the total environment impact of domestic wells and hydrogeologic setting on water quality in peri-urban Dar es Salaam, Tanzania. Science of the Total Environment,686, 1238–1250. https://doi.org/10.1016/j.scitotenv.2019.05.202.

    CAS  Article  Google Scholar 

  • Norat-Ramírez, J., Lázaro, P., Hernández-Delgado, E. A., & -Torres, H. (2019). A septic waste index model to measure the impact of septic tanks on coastal water quality and coral reef communities in Rincon Puerto Rico. Ocean and Coastal Management,169(7), 201–213. https://doi.org/10.1016/j.ocecoaman.2018.12.016.

    Article  Google Scholar 

  • Orozco, R. (2015). Propuesta de manejo de uso y cobertura de la tierra para la reducción del riesgo de contaminación del acuífero costero Jacó, Pacífico Central, Costa Rica. (Tesis de Licenciatura). Universidad Nacional, Heredia, Costa Rica.

  • Oyem, H. H., Oyem, I. M., & Usese, A. I. (2015). Iron, manganese, cadmium, chromium, zinc and arsenic groundwater contents of Agbor and Owa communities of Nigeria. SpringerPlus,4(1), 104. https://doi.org/10.1186/s40064-015-0867-0.

    CAS  Article  Google Scholar 

  • Palmucci, W., Rusi, S., & Di Curzio, D. (2016). Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy. Environmental Science and Pollution Research,23(12), 11790–11805. https://doi.org/10.1007/s11356-016-6371-4.

    CAS  Article  Google Scholar 

  • Pazand, K., Khosravi, D., Ghaderi, M. R., & Rezvanianzadeh, M. R. (2018). Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: A case study of Ardestan basin in Central Iran. Groundwater for Sustainable Development,6, 245–254. https://doi.org/10.1016/j.gsd.2018.01.008.

    Article  Google Scholar 

  • Petheram, C., Bristow, K. L., & Nelson, P. N. (2008). Understanding and managing groundwater and salinity in a tropical conjunctive water use irrigation district. Agricultural Water Management,95(10), 1167–1179. https://doi.org/10.1016/j.agwat.2008.04.016.

    Article  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions, American Geophysical Union,25(6), 914. https://doi.org/10.1029/TR025i006p00914.

    Article  Google Scholar 

  • Programa, Estado de la, Nación, & (PEN). (2015). Estado de la Nación en Desarrollo Humano Sostenible. San José, Costa Rica: PEN.

    Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Apr 2018.

  • Rachid, G., Fadel, M., Najm, M., & Alameddine, I. (2017). Towards a framework for the assessment of saltwater intrusion in coastal aquifers. Environmental Impact Assessment Review. https://doi.org/10.1016/j.eiar.2017.08.001.

    Article  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (Eds.). (2012). Standard Methods for the Examination of Water and Wastewater (22nd Ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Saldarriaga-Noreña, H., de la Garza-Rodríguez, I., Waliszewski, S., -Urbina, E., Amador-Muñoz, O., Dávila, M., et al. (2014). Chemical evaluation of groundwater from supply wells in the state of Coahuila, México. Journal of Water Resource and Protection,06(01), 49–54. https://doi.org/10.4236/jwarp.2014.61008.

    CAS  Article  Google Scholar 

  • Sánchez-Murillo, R., Birkel, C., Welsh, K., Esquivel-Hernández, G., Corrales-Salazar, J., Boll, J., et al. (2016). Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews,131, 250–261. https://doi.org/10.1016/j.quascirev.2015.08.028.

    Article  Google Scholar 

  • Seddique, A. A., Masuda, H., Anma, R., Bhattacharya, P., Yokoo, Y., & Shimizu, Y. (2019). Hydrogeochemical and isotopic signatures for the identification of seawater intrusion in the paleobeach aquifer of Cox ’ s Bazar city and its surrounding. Groundwater for Sustainable Development,9, 100215. https://doi.org/10.1016/j.gsd.2019.100215.

    Article  Google Scholar 

  • Singaraja, C., Chidambaram, S., Prasanna, M. V., Thivya, C., & Thilagavathi, R. (2014). Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu India. Environmental Earth Sciences,71(1), 451–464. https://doi.org/10.1007/s12665-013-2453-5.

    CAS  Article  Google Scholar 

  • Souid, F., Agoubi, B., Telahigue, F., Chahlaoui, A., & Kharroubi, A. (2018). Groundwater salinization and seawater intrusion tracing based on lithium concentration in the shallow aquifer of Jerba Island, southeastern Tunisia. Journal of African Earth Sciences,138, 233–246. https://doi.org/10.1016/j.jafrearsci.2017.11.013.

    CAS  Article  Google Scholar 

  • Vera, I., -Tapia, I., & Enriquez, C. (2012). Effects of drought and subtidal sea-level variability on salt intrusion in a coastal karst aquifer. Marine and Freshwater Research,63(6), 485. https://doi.org/10.1071/MF11270.

    Article  Google Scholar 

  • Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(253), 236–244. https://www.jstor.org/stable/2282967

  • Weng, H.-X., Qin, Y.-C., & Chen, X.-H. (2007). Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain China. Hydrogeology Journal,15(4), 715–726. https://doi.org/10.1007/s10040-006-0119-z.

    CAS  Article  Google Scholar 

  • White, E., & Kaplan, D. (2017). Restore or retreat? Saltwater intrusion and water management in coastal wetlands. Ecosystem Health and Sustainability,3(1), e01258. https://doi.org/10.1002/ehs2.1258.

    Article  Google Scholar 

  • World Health Organization (WHO). (2011). Guidelines for drinking water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Xu, J., Chen, Y., Li, W., Zhang, L., Hong, Y., Bi, X., et al. (2012). Statistical analysis of groundwater chemistry of the Tarim River lower reaches. Northwest China: Environmental Earth Sciences. https://doi.org/10.1007/s12665-011-1161-2

    Book  Google Scholar 

  • Yeomans, K. A., & Golder, P. A. (1982). The Guttman–Kaiser criterion as a predictor of the number of common factors. The Statistician,31(3), 221. https://doi.org/10.2307/2987988.

    Article  Google Scholar 

  • Yidana, S. M., Bawoyobie, P., Sakyi, P., & Fynn, O. F. (2018). Evolutionary analysis of groundwater flow: Application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana. Journal of African Earth Sciences,138, 167–176. https://doi.org/10.1016/j.jafrearsci.2017.10.026.

    CAS  Article  Google Scholar 

  • Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q., Guo, J., et al. (2018). Hydrochemical characteristics and multivariate statistical analysis of natural water system: A case study in Kangding County Southwestern China. Water, 10(1), 80. https://doi.org/10.3390/w10010080.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Research Office of Universidad Nacional, Costa Rica (SIA 0232-11) and the International Atomic Energy Agency (ARCAL RLA/7/016). We thank the Laboratory of Chemical Analysis, the Laboratory of Microbiology, and the Laboratory of Environmental Hydrology at Universidad Nacional, Costa Rica for helping with the chemical analyses, the microbiology screening, and the sampling logistics, respectively. We also thank C. Núñez-Solís and G. Moraga-López for their collaboration with the spatial analysis.

Author information

Authors and Affiliations

Authors

Contributions

R.S-G., L.M-R., A.F-S and H.M-S designed the study. R.S-G performed the experiments and data analysis with significant contribution of L.M-R and R.S-M. All the authors contributed to write the manuscript.

Corresponding author

Correspondence to L. Mena-Rivera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 441 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Gutiérrez, R., Mena-Rivera, L., Sánchez-Murillo, R. et al. Hydrogeochemical baseline in a human-altered landscape of the central Pacific coast of Costa Rica. Environ Geochem Health 42, 2685–2701 (2020). https://doi.org/10.1007/s10653-019-00501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00501-5

Keywords

  • Costa Rica
  • Human-altered tropical coastal aquifer
  • Hydrogeochemical processes
  • Water quality