Skip to main content

Impact of a tire fire accident on soil pollution and the use of clay minerals as natural geo-indicators

Abstract

Following the occurrence of a fire at a tire landfill in the surrounding area of Madrid City (Spain), polycyclic aromatic hydrocarbons (PAHs) and trace elements present in soils were analyzed to assess the impact of the fire. The capacity of the soils’ clay mineral fraction to reflect this air pollution incident was studied. Fourteen soil samples were collected at different distances under the smoke plume, and they were subjected to high-performance liquid chromatography–photodiode array detection, inductively coupled plasma mass spectrometry and X-ray diffraction analyses. Clay minerals content showed a strong correlation with the pollutants potentially released in the tire fire, acenaphthene, pyrene, benzo(a)pyrene and benzo(a)fluoranthene. Trace metals Zn and Se were related to the proximity of the tire fire without any relationship with clay minerals content. This work suggests the use of natural clay minerals as potential PAHs geo-indicators in response to air pollution, complementary to current air and biological analyses.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2019). Polycyclic aromatic hydrocarbons and potentially toxic elements in seafood from the Persian Gulf: Presence, trophic transfer, and chronic intake risk assessment. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00343-1.

    Article  Google Scholar 

  2. Akter, K. F., Owens, G., Davey, D. E., & Naidu, R. (2005). Arsenic speciation and toxicity in biological systems. In G. W. Ware, L. A. Albert, D. G. Crosby, P. de Voogt, O. Hutzinger, J. B. Knaak, et al. (Eds.), Reviews of environmental contamination and toxicology (pp. 97–149). New York, NY: Springer.

    Chapter  Google Scholar 

  3. Amonette, J. E., Zelazny, L. W., & Luxmoore, R. J. (1994). Quantitative methods in soil mineralogy: proceedings of a symposium sponsored by Division S-9 of the Soil Science Society of America : the symposium was held in San Antonio, Texas on October 23-24, 1990. Soil Science Society of America.

  4. Artíñano, B., Gómez-Moreno, F. J., Díaz, E., Amato, F., Pandolfi, M., Alonso-Blanco, E., et al. (2017). Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. Science of the Total Environment,593–594, 543–551. https://doi.org/10.1016/j.scitotenv.2017.03.148.

    CAS  Article  Google Scholar 

  5. Benlahcen, K. T., Chaoui, A., Budzinski, H., Bellocq, J., & Garrigues, P. (1997). Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Marine Pollution Bulletin,34(5), 298–305. https://doi.org/10.1016/S0025-326X(96)00098-7.

    CAS  Article  Google Scholar 

  6. Bergaya, F., & Lagaly, G. (2013). Chapter 1—General introduction: Clays, clay minerals, and clay science. In F. Bergaya & G. Lagaly (Eds.), Developments in clay science (Vol. 5, pp. 1–19). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01001-9.

    Chapter  Google Scholar 

  7. Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry,58(1), 85–97. https://doi.org/10.1016/S0304-4203(97)00028-5.

    CAS  Article  Google Scholar 

  8. Bulletin, O. S. (2005). Royal Decree 9/2005, of 14th January, establishing the list of potentially polluting activities for the land and the criteria and standards for the declaration of contaminated lands. BOE.

  9. Bustillo, M. A., & Alonso-Zarza, A. M. J. S. G. (2007). Overlapping of pedogenesis and meteoric diagenesis in distal alluvial and shallow lacustrine deposits in the Madrid Miocene Basin, Spain. Sedimentary Geology,198(3–4), 255–271. https://doi.org/10.1016/j.sedgeo.2006.12.006.

    Article  Google Scholar 

  10. Churchman, G. J., Gates, W. P., Theng, B. K. G., & Yuan, G. (2006). Chapter 11.1 clays and clay minerals for pollution control. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Developments in clay science (Vol. 1, pp. 625–675). Amsterdam: Elsevier. https://doi.org/10.1016/S1572-4352(05)01020-2.

    Chapter  Google Scholar 

  11. Clauer, N., Fallick, A. E., Galán, E., Pozo, M., & Taylor, C. (2012). Varied crystallization conditions for Neogene sepiolite and associated Mg-clays from Madrid Basin (Spain) traced by oxygen and hydrogen isotope geochemistry. Geochimica et Cosmochimica Acta,94, 181–198. https://doi.org/10.1016/j.gca.2012.07.016.

    CAS  Article  Google Scholar 

  12. Cobas, M., Ferreira, L., Sanromán, M., & Pazos, M. (2014). Assessment of sepiolite as a low-cost adsorbent for phenanthrene and pyrene removal: Kinetic and equilibrium studies. Journal of Ecological Engineering,70, 287–294. https://doi.org/10.1016/j.ecoleng.2014.06.014.

    Article  Google Scholar 

  13. Collins, J. F., Brown, J. P., Dawson, S. V., & Marty, M. A. (1991). Risk assessment for benzo[a]pyrene. Regulatory Toxicology and Pharmacology,13(2), 170–184. https://doi.org/10.1016/0273-2300(91)90020-V.

    CAS  Article  Google Scholar 

  14. Cuevas, J., Fernández, R., Ortega, A., & Ruiz, A.I. (2014). Comparison of alternative bentonites for potential use as buffer and sealing materials in the Swiss concept for radioactive waste disposal. Part 2: Results. Nagra internal report. Arbeitsbericht NAN 14-65. 76 pp.

  15. Das, S., & Ting, Y.-P. (2017). Evaluation of wet digestion methods for quantification of metal content in electronic scrap material. Resources,6(4), 64. https://doi.org/10.3390/resources6040064.

    Article  Google Scholar 

  16. Downard, J., Singh, A., Bullard, R., Jayarathne, T., Rathnayake, C. M., Simmons, D. L., et al. (2015). Uncontrolled combustion of shredded tires in a landfill—Part 1: Characterization of gaseous and particulate emissions. Atmospheric Environment,104, 195–204. https://doi.org/10.1016/j.atmosenv.2014.12.059.

    CAS  Article  Google Scholar 

  17. EPA. (2007). Microwave assisted acid digestion of sediments microwave assisted acid digestion of sediments, sludges, soils, and oils (p. 30). Washington: United States Environmental Protection Agency.

    Google Scholar 

  18. Escobar-Arnanz, J., Mekni, S., Blanco, G., Eljarrat, E., Barceló, D., & Ramos, L. (2018). Characterization of organic aromatic compounds in soils affected by an uncontrolled tire landfill fire through the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Journal of Chromatography A,1536, 163–175. https://doi.org/10.1016/j.chroma.2017.10.044.

    CAS  Article  Google Scholar 

  19. García-Delgado, C., Yunta, F., & Eymar, E. (2013). Methodology for polycyclic aromatic hydrocarbons extraction from either fresh or dry spent mushroom compost and quantification by high-performance liquid chromatography-photodiode array detection. Communications in Soil Science and Plant Analysis,44(1–4), 817–825. https://doi.org/10.1080/00103624.2013.749439.

    CAS  Article  Google Scholar 

  20. García-Delgado, C., Yunta, F., & Eymar, E. (2016). Are physico-chemical soil characteristics key factors to select the polycyclic aromatic hydrocarbons extraction procedure? International Journal of Environmental Analytical Chemistry,96(1), 87–100.

    Article  Google Scholar 

  21. Garelick, H., Jones, H., Dybowska, A., & Valsami-Jones, E. (2008). Arsenic pollution sources. In H. Garelick, & H. Jones (Eds.), Reviews of environmental contamination volume 197: International perspectives on arsenic pollution and remediation (pp. 17–60). New York, NY: Springer.

    Google Scholar 

  22. Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal,66(2), 413–421.

    CAS  Article  Google Scholar 

  23. González-Santamaría, D., López, E., Ruiz, A., Fernández, R., Ortega, A., & Cuevas, J. (2017). Adsorption of phenanthrene by stevensite and sepiolite. Clay Minerals,52(3), 341–350. https://doi.org/10.1180/claymin.2017.052.3.05.

    CAS  Article  Google Scholar 

  24. Hundal, L. S., Thompson, M. L., Laird, D. A., & Carmo, A. M. (2001). Sorption of phenanthrene by reference smectites. Environmental Science and Technology,35(17), 3456–3461. https://doi.org/10.1021/es001982a.

    CAS  Article  Google Scholar 

  25. FAO, I. W. G. (2015). World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. WRB, J World Soil Resources Reports No. 106 (pp. 192).

  26. Lemieux, P. M., Lutes, C. C., & Santoianni, D. A. (2004). Emissions of organic air toxics from open burning: A comprehensive review. Progress in Energy and Combustion Science,30(1), 1–32. https://doi.org/10.1016/j.pecs.2003.08.001.

    CAS  Article  Google Scholar 

  27. Lemieux, P. M., & Ryan, J. V. (1993). Characterization of air pollutants emitted from a simulated scrap tire fire. Journal of the Air and Waste Management Association,43(8), 1106–1115. https://doi.org/10.1080/1073161X.1993.10467189.

    CAS  Article  Google Scholar 

  28. MeteoValdemoro. (2016). Datos climatológicos Valdemoro. Retrieved June 19, 2019, from http://www.meteovaldemoro.es/NOAA2016.TXT.

  29. Nadal, M., Rovira, J., Diaz-Ferrero, J., Schuhmacher, M., & Domingo, J. L. (2016). Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks. Environment International,97, 37–44. https://doi.org/10.1016/j.envint.2016.10.016.

    CAS  Article  Google Scholar 

  30. Orecchio, S., Fiore, M., Barreca, S., & Vara, G. (2017). Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography-mass spectrometry (GC/MS) analysis: A case study. Environmental Research and Public Health,14(2), 195. https://doi.org/10.3390/ijerph14020195.

    CAS  Article  Google Scholar 

  31. Pandolfi, M., Alastuey, A., Cabañas, M., Martínez, S., Rebeca, C., Vázquez, L., Artíñano, B., Diaz-Ramiro E., & García- Alonso, S. (2016). Muestreo y análisis del polvo respirable depositado en exteriores e interiores del CEIP El Quiñón, Seseña (pp. 14). Instituto de Diagnóstico Ambiental y Estudios del Agua del Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), y Departamentos de Medio Ambiente y la División de Química del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT). Retrieved May 1, 2019, from http://pagina.jccm.es/medioambiente/rvca/incendio/Informe_CSIC_CIEMAT_30_05_2016.pdf.

  32. Reisman, J. (1997). Air emissions from scrap tire combustion. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  33. Saeedi, M., Li, L. Y., & Zadeh, S. M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials,227, 9–17. https://doi.org/10.1016/j.jhazmat.2012.04.047.

    CAS  Article  Google Scholar 

  34. Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and Applied Pyrolysis,75(1), 11–18. https://doi.org/10.1016/j.jaap.2005.03.002.

    CAS  Article  Google Scholar 

  35. Steer, P. J., Tashiro, C. H., Mcillveen, W. D., & Clement, R. E. (1995). PCDD and PCDF in air, soil, vegetation and oily runoff from a tire fire. Water, Air, and Soil Pollution,82(3), 659–674. https://doi.org/10.1007/BF00479418.

    CAS  Article  Google Scholar 

  36. Stewart, A., & Hursthouse, A. (2018). Environment and human health: The challenge of uncertainty in risk assessment. Geosciences,8(1), 24. https://doi.org/10.3390/geosciences8010024.

    CAS  Article  Google Scholar 

  37. Swift, R. S., & McLaren, R. G. (1991). Micronutrient adsorption by soils and soil colloids. In G. H. Bolt, M. F. De Boodt, M. H. B. Hayes, M. B. McBride, & E. B. A. De Strooper (Eds.), Interactions at the soil colloid — soil solution interface (pp. 257–292). Dordrecht: Springer.

    Chapter  Google Scholar 

  38. Swyngedouw, C., & Crépin, J. M. (2008). Chapter two—Sampling methods for site characterization. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental Geochemistry (pp. 13–27). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-53159-9.00002-4.

    Chapter  Google Scholar 

  39. USDA (2014). Keys to soil taxonomy (pp. 372). Soil Survey Staff.

  40. Volzone, C. (2007). Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science,36(1), 191–196. https://doi.org/10.1016/j.clay.2006.06.013.

    CAS  Article  Google Scholar 

  41. Wang, Z., Li, K., Lambert, P., & Yang, C. (2007). Identification, characterization and quantitation of pyrogenic polycylic aromatic hydrocarbons and other organic compounds in tire fire products. Journal of Chromatography A,1139(1), 14–26. https://doi.org/10.1016/j.chroma.2006.10.085.

    CAS  Article  Google Scholar 

  42. Yang, G.-P. (2000). Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environmental Pollution,108(2), 163–171. https://doi.org/10.1016/S0269-7491(99)00245-6.

    CAS  Article  Google Scholar 

  43. Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., et al. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences,3(1), 16–29. https://doi.org/10.1016/j.sesci.2017.12.002.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been economically supported by the Ministry of Economy and Competitiveness of Spain, Project AGL2016-78490-R.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel E. González-Santamaría.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuevas, J., González-Santamaría, D.E., García-Delgado, C. et al. Impact of a tire fire accident on soil pollution and the use of clay minerals as natural geo-indicators. Environ Geochem Health 42, 2147–2161 (2020). https://doi.org/10.1007/s10653-019-00485-2

Download citation

Keywords

  • Clay minerals
  • Tire fire landfill
  • Health and environmental risk
  • Pollution monitoring
  • PAHs
  • Hazardous trace elements