Heavy metals in urban road dusts from Kolkata and Bengaluru, India: implications for human health

Abstract

Air pollution and dust pollution are major urban environmental issues, with road dust being a potential source and a pathway for human exposure. The developing megacities of India, where the population may spend a significant portion of their working lives close to the roadside, including consuming street food, have obvious source–pathway–receptor linkages. The aim of this study in Kolkata and Bengaluru, India, was to evaluate the risk to human health from inorganic components of road dust. Samples were collected and analysed from a cross section of urban environments for a wide range of anthropogenic and geogenic elements, some such as antimony showing an increase in response to vehicle activity. Calculated enrichment factors relative to crustal abundance demonstrated significant enrichment in common heavy metals and less commonly reported elements, e.g. molybdenum, antimony, that may be used as contaminant markers. Factor analysis gave multielement signatures associated with geography, vehicle traffic and local industry. The bio-accessibility of road dusts in terms of ingestion was determined using the BARGE method with more than 50% of zinc and lead being available in some cases. A formal human health risk assessment using the US EPA framework showed that lead in Kolkata and chromium in Bengaluru were the elements of most concern amongst chromium, nickel, copper, zinc and lead. However, the only risk combination (hazard index) shown to be significant was lead exposure to children in Kolkata. Ingestion dominated the risk pathways, being significantly greater than dermal and inhalation routes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmed, F., & Ishiga, H. (2006). Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmospheric Environment, 40(21), 3835–3844. https://doi.org/10.1016/j.atmosenv.2006.03.004.

    CAS  Article  Google Scholar 

  2. anon. (2015). Bangalore ranks 12th in list of world’s top 20 tech-rich cities: The Economic Times. Economic Times-India Times. https://economictimes.indiatimes.com/news/economy/indicators/bangalore-ranks-12th-in-list-of-worlds-top-20-tech-rich-cities/articleshow/47958523.cms. Accessed 4 April 2019.

  3. anon. (2018). Kolkata tops in public transport: Study|India News—Times of India. The Times of India. https://timesofindia.indiatimes.com/india/kolkata-tops-in-public-transport-study/articleshow/66476386.cms. Accessed 3 April 2019.

  4. anon. (2019a). Kolkata climate: Average temperature, weather by month, Kolkata weather averages—Climate-Data.org. Climate-Data.Org. https://en.climate-data.org/asia/india/west-bengal/kolkata-2826/. Accessed 4 April 2019.

  5. anon. (2019b). Bengaluru climate: Average temperature, weather by month, Bengaluru weather averages—Climate-Data.org. Climate-Data.Org. https://en.climate-data.org/asia/india/karnataka/bengaluru-4562/. Accessed 4 April 2019.

  6. Atiemo, S. M., Ofosu, F. G., Aboh, I. J. K., & Oppon, O. C. (2012). Levels and sources of heavy metal contamination in road dust in selected major highways of Accra, Ghana. X-Ray Spectrometry, 41(2), 105–110. https://doi.org/10.1002/xrs.2374.

    CAS  Article  Google Scholar 

  7. Banerjee, A. D. K. (2003). Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution, 123(1), 95–105. https://doi.org/10.1016/S0269-7491(02)00337-8.

    CAS  Article  Google Scholar 

  8. Census of India. (2011). Provisional population totals, census of India 2011 urban agglomerations/cities having population 1 lakh and above District Name of Urban Code Agglomeration/City Provisional Population Totals, Census of India 2011 Urban Agglomerations/Cities havin.

  9. Chatterjee, A., & Banerjee, R. N. (1999). Determination of lead and other metals in a residential area of greater Calcutta. Science of the Total Environment, 227(2–3), 175–185. https://doi.org/10.1016/S0048-9697(99)00026-1.

    CAS  Article  Google Scholar 

  10. Chaudhuri, A. (2012). The city that got left behind—Reviving Kolkata. The Economist. https://www.economist.com/asia/2012/01/07/the-city-that-got-left-behind. Accessed 4 April 2019.

  11. Checkoway, H., Heyer, N. J., Seixas, N. S., Welp, E. A. E., Demers, P. A., Hughes, J. M., et al. (1997). Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry. American Journal of Epidemiology, 145(8), 680–688. https://doi.org/10.1093/aje/145.8.680.

    CAS  Article  Google Scholar 

  12. Chen, P., Bi, X., Zhang, J., Wu, J., & Feng, Y. (2015). Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology, 20, 104–109. https://doi.org/10.1016/J.PARTIC.2014.04.020.

    CAS  Article  Google Scholar 

  13. Chen, H., Lu, X., Li, L. Y., Gao, T., & Chang, Y. (2014). Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Science of the Total Environment, 484(1), 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026.

    CAS  Article  Google Scholar 

  14. Chutke, N. L., Ambulkar, M. N., Aggarwal, A. L., & Garg, A. N. (1994). Instrumental neutron activation analysis of ambient air dust particulates from metropolitan cities in India. Environmental Pollution, 85(1), 67–76. https://doi.org/10.1016/0269-7491(94)90239-9.

    CAS  Article  Google Scholar 

  15. Cox, W. (2019). Demographia world urban areas: 15 th annual addition. Demographia, 15th edn. NewGeography.com. http://www.demographia.com/db-worldua.pdf.

  16. Das, A., Krishna, K., Kumar, R., Das, A., Sengupta, S., & Ghosh, J. G. (2016). Tracing lead contamination in foods in the city of Kolkata, India. Environmental Science and Pollution Research, 23(22), 22454–22466. https://doi.org/10.1007/s11356-016-7409-3.

    CAS  Article  Google Scholar 

  17. Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., et al. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46(11), 6252–6260. https://doi.org/10.1021/es3006942.

    CAS  Article  Google Scholar 

  18. Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Beijing, China. Procedia Environmental Sciences, 18, 299–309. https://doi.org/10.1016/j.proenv.2013.04.039.

    CAS  Article  Google Scholar 

  19. Duan, Z., Wang, J., Xuan, B., Cai, X., & Zhang, Y. (2018). Spatial distribution and health risk assessment of heavy metals in urban road dust of Guiyang, China.

  20. Duong, T. T. T., & Lee, B. K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92(3), 554–562. https://doi.org/10.1016/j.jenvman.2010.09.010.

    CAS  Article  Google Scholar 

  21. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026.

    CAS  Article  Google Scholar 

  22. Fujiwara, F., Rebagliati, R. J., Marrero, J., Gómez, D., & Smichowski, P. (2011). Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchemical Journal, 97(1), 62–67. https://doi.org/10.1016/j.microc.2010.05.006.

    CAS  Article  Google Scholar 

  23. Gope, M., Masto, R. E., George, J., Hoque, R. R., & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.01.008.

    Article  Google Scholar 

  24. Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., & Kokot, S. (2012). Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 87(2), 163–170. https://doi.org/10.1016/j.chemosphere.2011.12.012.

    CAS  Article  Google Scholar 

  25. Gupta, A. K., Karar, K., & Srivastava, A. (2007). Chemical mass balance source apportionment of PM10and TSP in residential and industrial sites of an urban region of Kolkata, India. Journal of Hazardous Materials, 142(1–2), 279–287. https://doi.org/10.1016/j.jhazmat.2006.08.013.

    CAS  Article  Google Scholar 

  26. Hamilton, E. M., Barlow, T. S., Gowing, C. J. B., & Watts, M. J. (2015). Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal, 123, 131–138. https://doi.org/10.1016/j.microc.2015.06.001.

    CAS  Article  Google Scholar 

  27. Herath, D., Pitawala, A., & Gunatilake, J. (2016). Heavy metals in road deposited sediments and road dusts of Colombo Capital, Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 44(2), 193. https://doi.org/10.4038/jnsfsr.v44i2.8000.

    CAS  Article  Google Scholar 

  28. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215–1221. https://doi.org/10.1016/j.envpol.2011.01.037.

    CAS  Article  Google Scholar 

  29. Huang, M., Wang, W., Leung, H., Yu Chan, C., Keung Liu, W., Hung Wong, M., et al. (2012). Mercury levels in road dust and household TSP/PM2.5related to concentrations in hair in Guangzhou, China. Ecotoxicology and Environmental Safety, 81, 27–35. https://doi.org/10.1016/j.ecoenv.2012.04.010.

    CAS  Article  Google Scholar 

  30. Juhasz, A. L., Weber, J., & Smith, E. (2011). Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 186(2–3), 1870–1879. https://doi.org/10.1016/J.JHAZMAT.2010.12.095.

    CAS  Article  Google Scholar 

  31. Karar, K., & Gupta, A. K. (2006). Seasonal variations and chemical characterization of ambient PM10at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research, 81(1), 36–53. https://doi.org/10.1016/j.atmosres.2005.11.003.

    CAS  Article  Google Scholar 

  32. Keuken, M. P., Moerman, M., Voogt, M., Blom, M., Weijers, E. P., Röckmann, T., et al. (2013). Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmospheric Environment, 71, 26–35. https://doi.org/10.1016/J.ATMOSENV.2013.01.032.

    CAS  Article  Google Scholar 

  33. Khairy, M. A., Barakat, A. O., Mostafa, A. R., & Wade, T. L. (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchemical Journal, 97(2), 234–242. https://doi.org/10.1016/j.microc.2010.09.012.

    CAS  Article  Google Scholar 

  34. Klein, D. H., & Russell, P. (1973). Heavy metals: fallout around a power plant. Environmental Science and Technology, 7(4), 357–358. https://doi.org/10.1021/es60076a004.

    CAS  Article  Google Scholar 

  35. Kong, S., Lu, B., Ji, Y., Zhao, X., Chen, L., Li, Z., et al. (2011). Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal, 98(2), 280–290. https://doi.org/10.1016/J.MICROC.2011.02.012.

    CAS  Article  Google Scholar 

  36. Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 211–212, 8–17. https://doi.org/10.1016/j.geoderma.2013.07.004.

    CAS  Article  Google Scholar 

  37. Kumar, A. V., Patil, R. S., & Nambi, K. S. V. (2001). Source apportionment of suspended particulate matter at two traffic junctions in Mumbai, India. Atmospheric Environment, 35(25), 4245–4251. https://doi.org/10.1016/S1352-2310(01)00258-8.

    CAS  Article  Google Scholar 

  38. Li, H., Shi, A., & Zhang, X. (2015). Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park. Journal of Environmental Sciences (China), 32, 228–237. https://doi.org/10.1016/j.jes.2014.11.014.

    CAS  Article  Google Scholar 

  39. Liu, A., Liu, L., Li, D., & Guan, Y. (2015). Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse. Science of the Total Environment, 515–516, 20–29. https://doi.org/10.1016/j.scitotenv.2015.02.026.

    CAS  Article  Google Scholar 

  40. Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476–477, 522–531. https://doi.org/10.1016/j.scitotenv.2014.01.055.

    CAS  Article  Google Scholar 

  41. Lorenzi, D., Entwistle, J. A., Cave, M., & Dean, J. R. (2011). Determination of polycyclic aromatic hydrocarbons in urban street dust: Implications for human health. Chemosphere, 83(7), 970–977. https://doi.org/10.1016/j.chemosphere.2011.02.020.

    CAS  Article  Google Scholar 

  42. Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173(1–3), 744–749. https://doi.org/10.1016/j.jhazmat.2009.09.001.

    CAS  Article  Google Scholar 

  43. Men, C., Liu, R., Wang, Q., Guo, L., & Shen, Z. (2018a). The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Science of the Total Environment, 637–638, 844–854. https://doi.org/10.1016/j.scitotenv.2018.05.059.

    CAS  Article  Google Scholar 

  44. Men, C., Liu, R., Xu, F., Wang, Q., Guo, L., & Shen, Z. (2018b). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, 138–147. https://doi.org/10.1016/J.SCITOTENV.2017.08.123.

    CAS  Article  Google Scholar 

  45. Moudgal, S. (2018). Bengaluru worse than Delhi in pollution levels: CPCB|Bengaluru News—Times of India. Times of India. https://m.timesofindia.com/city/bengaluru/bengaluru-worse-than-delhi-in-pollution-levels-cpcb/amp_articleshow/65380612.cms. Accessed 4 April 2019.

  46. Mummullage, S., Egodawatta, P., Ayoko, G. A., & Goonetilleke, A. (2016). Use of physicochemical signatures to assess the sources of metals in urban road dust. Science of the Total Environment, 541, 1303–1309. https://doi.org/10.1016/j.scitotenv.2015.10.032.

    CAS  Article  Google Scholar 

  47. Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2017). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 40(4), 1187–1208. https://doi.org/10.1007/s10653-017-0035-2.

    CAS  Article  Google Scholar 

  48. Padoan, E., Romè, C., & Ajmone-Marsan, F. (2017). Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Science of the Total Environment, 601–602, 89–98. https://doi.org/10.1016/j.scitotenv.2017.05.180.

    CAS  Article  Google Scholar 

  49. Pan, H., Lu, X., & Lei, K. (2017). A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: Contamination, source apportionment and spatial distribution. Science of the Total Environment, 609, 1361–1369. https://doi.org/10.1016/j.scitotenv.2017.08.004.

    CAS  Article  Google Scholar 

  50. Pathak, A. K., Yadav, S., Kumar, P., & Kumar, R. (2013). Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Science of the Total Environment, 443, 662–672. https://doi.org/10.1016/j.scitotenv.2012.11.030.

    CAS  Article  Google Scholar 

  51. PNUD. (2009). World Urbanization Prospects: The 2009 RevisionUrban and rural population, 55. http://knoema.com/UNWUP2009RURP/world-urbanization-prospects-the-2009-revision-urban-and-rural-population-march-2010.

  52. Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., et al. (2004). A European aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38(16), 2579–2595. https://doi.org/10.1016/j.atmosenv.2004.01.041.

    CAS  Article  Google Scholar 

  53. Querol, X., Sánchez de la Campa, A. M., Alastuey, A., González-Castanedo, Y., Fernández-Camacho, R., Pio, C., et al. (2010). High concentrations of heavy metals in PM from ceramic factories of Southern Spain. Atmospheric Research, 96(4), 633–644. https://doi.org/10.1016/j.atmosres.2010.02.011.

    CAS  Article  Google Scholar 

  54. Rajaram, B. S., Suryawanshi, P. V., Bhanarkar, A. D., & Rao, C. V. C. (2014). Heavy metals contamination in road dust in Delhi city, India. Environmental Earth Sciences, 72(10), 3929–3938. https://doi.org/10.1007/s12665-014-3281-y.

    CAS  Article  Google Scholar 

  55. Reddy, M. S., Basha, S., Joshi, H. V., & Jha, B. (2005). Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. Journal of Hazardous Materials, 123(1–3), 242–249. https://doi.org/10.1016/J.JHAZMAT.2005.04.008.

    CAS  Article  Google Scholar 

  56. Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

    Article  Google Scholar 

  57. Shankar, B. (2009). Chromium pollution in the ground waters of an industrial area in Bangalore, India. Environmental Engineering Science. https://doi.org/10.1089/ees.2008.0043.

    Article  Google Scholar 

  58. Shi, D., & Lu, X. (2018). Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Science of the Total Environment, 636, 1211–1218. https://doi.org/10.1016/j.scitotenv.2018.04.385.

    CAS  Article  Google Scholar 

  59. Singh, A. K. (2011). Elemental chemistry and geochemical partitioning of heavy metals in road dust from Dhanbad and Bokaro regions, India. Environmental Earth Sciences, 62(7), 1447–1459. https://doi.org/10.1007/s12665-010-0630-3.

    CAS  Article  Google Scholar 

  60. SNIFFER. (2007). Environmental Legislation and Human Health: Guidance for Assessing Risk (August). http://www.sniffer.org.uk/files/1613/4183/7999/UKCC02_guidance.pdf.

  61. Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, 400(1–3), 270–282. https://doi.org/10.1016/J.SCITOTENV.2008.06.007.

    CAS  Article  Google Scholar 

  62. Turner, A. (2016). Heavy metals, metalloids and other hazardous elements in marine plastic litter. Marine Pollution Bulletin, 111(1–2), 136–142. https://doi.org/10.1016/J.MARPOLBUL.2016.07.020.

    CAS  Article  Google Scholar 

  63. USEPA. (2002). Supplemental guidance for developing soil screening levels for superfund sites. Office of Solid Waste and Emergency Response (OSWER) (December). https://nepis.epa.gov/Exe/ZyPDF.cgi/91003IJK.PDF?Dockey=91003IJK.PDF.

  64. USEPA. (2007). Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods Office of Solid Waste and Emergency Response. Environmental Protection (May). https://doi.org/10.1016/j.jphotochem.2008.02.027.

  65. Valdés, A., Polvé, M., Munoz, M., Toutain, J. P., & Morata, D. (2013). Geochemical features of aerosols in Santiago de Chile from time series analysis. Environmental Earth Sciences, 69(6), 2073–2090. https://doi.org/10.1007/s12665-013-2415-y.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was carried out as part of a collaboration between BGS (Nottingham, UK) and the University of Calcutta (Kolkata, India), with funding from the Royal Society International Joint Projects 2010/R3 REF: JP10135 and BGS Global. The study benefitted from the assistance of Senjuti Biswas and Dibyendu Rakshit from the Department of Marine Science, the University of Calcutta, and Yograj Banerjee from Indian Institute of Science, Bengaluru, in carrying out the fieldwork. SC, AM and MW publish with permission from the Director of the British Geological Survey, UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simon R. N. Chenery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10653_2019_467_MOESM1_ESM.tiff

Figure 1 is made with Natural Earth. Free vector and raster map data @ naturalearthdata.com. Figure 1a and b is based on OpenStreetMap map tiles and as such is licensed and published under the Creative Commons Attribution-ShareAlike 2.0 licence (CC BY-SA) © OpenStreetMap contributors (TIFF 1001 kb)

Supplementary material 2 (DOCX 158 kb)

Supplementary material 3 (DOCX 177 kb)

Supplementary material 4 (DOCX 35 kb)

Supplementary material 5 (DOCX 17 kb)

Supplementary material 6 (XLSX 13 kb)

Supplementary material 7 (XLSX 79 kb)

Supplementary material 8 (DOCX 16 kb)

Supplementary material 9 (DOCX 16 kb)

Supplementary material 10 (XLSX 12 kb)

Supplementary material 11 (DOCX 15 kb)

Supplementary material 12 (DOCX 15 kb)

Supplementary material 13 (XLSX 17 kb)

Supplementary material 14 (DOCX 67 kb)

Supplementary material 15 (XLSX 62 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chenery, S.R.N., Sarkar, S.K., Chatterjee, M. et al. Heavy metals in urban road dusts from Kolkata and Bengaluru, India: implications for human health. Environ Geochem Health 42, 2627–2643 (2020). https://doi.org/10.1007/s10653-019-00467-4

Download citation

Keywords

  • Road dust
  • Risk assessment
  • Kolkata
  • Bengaluru
  • Bio-accessibility