Abstract
Soil geochemistry and phytoavailable trace elements were investigated in 80 paddy soil samples and corresponding rice grains from the Mekong River Delta in Vietnam. Soil parameters like Fe-, Al-, and Mn-phases, organic matter, and pH-value determine element concentrations in soil and affect their transfer into rice grains. Arsenic exceeded the allowed limit for Vietnamese agricultural soils in 11% of the samples, presumably caused by natural processes. Lead surpassed the limit in one soil sample. Other toxic elements were close to their natural concentrations and far below allowable limits for agricultural soil. There was no clear correlation of trace element concentrations in soils with those in corresponding grains, even if the different soil parameters and the large pH-range between 3.7 and 6.8 were considered. To assess health risks of critical elements in rice, the thresholds of tolerable upper intake level for total food and drinking water (UL) and of permissible maximum concentration (MC) for rice grains were evaluated. Surprisingly, rice grains grown on non- or low-polluted soils can surpass the upper limits. According to the UL concept, 12% of the grains exceeded the UL of As, 29% that of Cd, and 27% that of Pb for each gender. According to the MC concept, 5% of the rice grains exceeded the MC of inorganic As for adults and 38% that for young children. 24% of the grains surpassed the MC of Pb, while Cd in all grains was below the MC. The differing results of the UL and MC approaches show an urgent need for revision and harmonization concerning As, Cd, and Pb limits, especially regarding countries with high rice consumption.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- DL:
-
Detection limit
- EF:
-
Enrichment factor
- EFSA:
-
European Food Safety Authority
- FAO:
-
Food and Agriculture Organization
- LOI:
-
Loss on ignition
- MC:
-
Permissible maximum concentration
- OM:
-
Organic material
- QCVN:
-
Vietnam National Technical Regulation
- RDA:
-
Recommended dietary allowance
- TF:
-
Transfer factor
- UL:
-
Tolerable upper intake level
- WHO:
-
World Health Organization
References
Akpor, O. B., Ohiobor, G. O., & Olaolu, T. D. (2014). Heavy metal pollutants in wastewater effluents: Sources, effects and remediation. Advances in Bioscience and Bioengineering,2, 37–43. https://doi.org/10.11648/j.abb.20140204.11.
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. J. Alloway (Ed.), Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Environmental pollution (3rd ed., Vol. 22, pp. 11–50). Dordrecht: Springer.
Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry,4, 361–377. https://doi.org/10.1016/j.arabjc.2010.07.019.
Berg, M., Stengel, C., Trang, P. T. K., Hung Viet, P., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment,372, 413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010.
Bolan, N. S., Makino, T., Kunhikrishnan, A., Kim, P.-J., Ishikawa, S., Murakami, M., et al. (2013). Chapter Four—cadmium contamination and its risk management in rice ecosystems. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 119, pp. 183–273). New York: Academic Press.
Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., et al. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International,34, 756–764. https://doi.org/10.1016/j.envint.2007.12.025.
Chaney, R. L., Kim, W. L., Kunhikrishnan, A., Yang, J. E., & Ok, Y. S. (2016). Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma A Global Journal of Soil Science,270, 1–2. https://doi.org/10.1016/j.geoderma.2016.03.001.
Chanpiwat, P., Sthiannopkao, S., Cho, K. H., Kim, K.-W., San, V., Suvanthong, B., et al. (2011). Contamination by arsenic and other trace elements of tube-well water along the Mekong River in Lao PDR. Environmental Pollution,159, 567–576. https://doi.org/10.1016/j.envpol.2010.10.007.
Chen, M., & Graedel, T. E. (2015). The potential for mining trace elements from phosphate rock. Journal of Cleaner Production,91, 337–346. https://doi.org/10.1016/j.jclepro.2014.12.042.
Chen, J., Gu, B., Royer, R. A., & Burgos, W. D. (2003). The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment,307, 167–178. https://doi.org/10.1016/S0048-9697(02)00538-7.
Christophersen, O. A., Lyons, G., Haug, A., & Steinnes, E. (2013). Selenium. In B. J. Alloway (Ed.), Heavy metals in soils: Trace elements and metalloids and their bioavailability (Vol. 22, pp. 428–469). Dordrecht: Springer.
EFSA. (2009a). Scientific Opinion on Arsenic in Food—EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal,7, 1351. https://doi.org/10.2903/j.efsa.2009.1351.
EFSA. (2009b). Cadmium in food—Scientific Opinion of the Panel on Contaminants in the Food Chain. The EFSA Journal,980, 1–139. https://doi.org/10.2903/j.efsa.2009.980.
EFSA. (2009c). Uranium in foodstuffs, in particular mineral water—Scientific Opinion of the Panel on Contaminants in the Food Chain. The EFSA Journal,1018, 1–59. https://doi.org/10.2903/j.efsa.2009.1018.
EFSA. (2010). Scientific Opinion on Lead in Food—EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal,8, 1570. https://doi.org/10.2903/j.efsa.2010.1570.
EFSA. (2012). Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA Journal,7, 2791. https://doi.org/10.2903/j.efsa.2009.1383.
EFSA. (2014). Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA Journal. https://doi.org/10.2903/j.efsa.2014.3595.
Erban, L. E., Gorelick, S. M., Zebker, H. A., & Fendorf, S. (2013). Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences,110, 13751–13756. https://doi.org/10.1073/pnas.1300503110.
European Union (2006). Commission regulation (EC) No 1881/2006 of 19 December 2006 setting the maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union L 364/5-364/24. European Commision: EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=ES/. Retrieved 27 Feb 2019.
FAO/WHO. (2014). Joint FAO/WHO food standards programme codex alimentarius commission (Vol. REP14/CF). Geneva: FAO/WHO.
Gimeno-Garcia, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution,92, 19–25. https://doi.org/10.1016/0269-7491(95)00090-9.
Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In M. N. V. Prasad (Ed.), Heavy metal stress in plants from biomolecules to ecosystems (pp. 1–27). Berlin Heidelberg: Springer.
Gromet, L. P., Dymek, R. F., Haskin, L. A., & Korotev, R. L. (1984). The “North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta,48, 2469–2482.
Hossain, M. F. (2006). Arsenic contamination in Bangladesh—An overview. Agriculture, Ecosystems & Environment,113, 1–16. https://doi.org/10.1016/j.agee.2005.08.034.
Huang, Y., Miyauchi, K., Endo, G., Don, L. D., Manh, N. C., & Inoue, C. (2016). Arsenic contamination of groundwater and agricultural soil irrigated with the groundwater in Mekong Delta. Vietnam. Environmental Earth Sciences,75, 757. https://doi.org/10.1007/s12665-016-5535-3.
Hung, N. N. (2011). Sediment dynamics in the floodplain of the Mekong Delta, Vietnam. Stuttgart: The University of Stuttgart.
Institute of Medicine. (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academies Press (US): Institute of Medicine (US) Panel on Micronutrients.
Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). London: Taylor & Francis Group, CRC Press.
Kim, H. K., Jang, T. I., Kim, S. M., & Park, S. W. (2015). Impact of domestic wastewater irrigation on heavy metal contamination in soil and vegetables. Environmental Earth Sciences,73, 2377–2383. https://doi.org/10.1007/s12665-014-3581-2.
Lin, H.-J., Sung, T.-I., Chen, C.-Y., & Guo, H.-R. (2013). Arsenic levels in drinking water and mortality of liver cancer in Taiwan. Journal of Hazardous Materials,262, 1132–1138. https://doi.org/10.1016/j.jhazmat.2012.12.049.
Luu, T. L. (2019). Remarks on the current quality of groundwater in Vietnam. Environmental Science and Pollution Research,26, 1163–1169. https://doi.org/10.1007/s11356-017-9631-z.
Mao, C., Song, Y., Chen, L., Ji, J., Li, J., Yuan, X., et al. (2019). Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA,175, 339–348. https://doi.org/10.1016/j.catena.2018.12.029.
Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology,37, 229–234. https://doi.org/10.1021/es0259842.
Merola, R. B., Hien, T. T., Quyen, D. T. T., & Vengosh, A. (2015). Arsenic exposure to drinking water in the Mekong Delta. Science of the Total Environment,511, 544–552. https://doi.org/10.1016/j.scitotenv.2014.12.091.
National Institutes of Health. (2018). Magnesium. https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/. Retrieved 27 Jan 2019.
Nguyen, T. P., Ruppert, H., Sauer, B., & Pasold, T. (2019). Harmful and nutrient elements in paddy soils and their transfer into rice grains (Oryza sativa) along two river systems in northern and central Vietnam. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00333-3.
Nogawa, K., Sakurai, M., Ishizaki, M., Kido, T., Nakagawa, H., & Suwazono, Y. (2017). Threshold limit values of the cadmium concentration in rice in the development of itai–itai disease using benchmark dose analysis. Journal of Applied Toxicology,37, 962–966. https://doi.org/10.1002/jat.3444.
Norton, G. J., Williams, P. N., Adomako, E. E., Price, A. H., Zhu, Y., Zhao, F.-J., et al. (2014). Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment,485–486, 428–434. https://doi.org/10.1016/j.scitotenv.2014.03.090.
QCVN. (2015). National technical regulation on the allowable limits of heavy metals in the soils. In Vietnamese-Government (Ed.), 03-MT:2015/BTNMT. Ministry of Natural Resources and Environment.
Rahman, M. A., & Hasegawa, H. (2011). High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Science of the Total Environment,409, 4645–4655. https://doi.org/10.1016/j.scitotenv.2011.07.068.
Rahman, M. A., Rahman, A., Khan, M. Z. K., & Renzaho, A. M. N. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicology and Environmental Safety,150, 335–343. https://doi.org/10.1016/j.ecoenv.2017.12.032.
Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., et al. (2016). Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research,23, 17859–17879. https://doi.org/10.1007/s11356-016-6436-4.
Roychowdhury, T. (2008). Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: Special reference to raw and cooked rice. Food and Chemical Toxicology,46, 2856–2864. https://doi.org/10.1016/j.fct.2008.05.019.
Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 3, pp. 1–64). Amsterdam: Elsevier.
Sauvé, S. (2014). Time to revisit arsenic regulations: comparing drinking water and rice. BMC Public Health,14, 465. https://doi.org/10.1186/1471-2458-14-465.
Shraim, A. M. (2017). Rice is a potential dietary source of not only arsenic but also other toxic elements like lead and chromium. Arabian Journal of Chemistry,10, S3434–S3443. https://doi.org/10.1016/j.arabjc.2014.02.004.
Singh, N., Gupta, V. K., Kumar, A., & Sharma, B. (2017). Synergistic effects of heavy metals and pesticides in living systems. Frontiers Chemistry. https://doi.org/10.3389/fchem.2017.00070.
Smedley, P. L., & Kinniburgh, D. G. (2017). Molybdenum in natural waters: A review of occurrence, distributions and controls. Applied Geochemistry,84, 387–432. https://doi.org/10.1016/j.apgeochem.2017.05.008.
Smith, A. H., Marshall, G., Yuan, Y., Ferreccio, C., Liaw, J., von Ehrenstein, O., et al. (2006). Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environmental Health Perspectives,114, 1293–1296. https://doi.org/10.1289/ehp.8832.
Stroebel, C. (2008). Screening evaluation of heavy metals in inorganic fertilizers. http://www.health.state.mn.us/divs/eh/risk/studies/fertrpt08.pdf. Retrieved 3 Dec 2018.
Suriyagoda, L. D. B., Dittert, K., & Lambers, H. (2018). Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agriculture, Ecosystems & Environment,253, 23–37. https://doi.org/10.1016/j.agee.2017.10.017.
Tchounwou, P. B., Yedjou, C. G., Udensi, U. K., Pacurari, M., Stevens, J. J., Patlolla, A. K., et al. (2019). State of the science review of the health effects of inorganic arsenic: Perspectives for future research. Environmental Toxicology,34, 188–202. https://doi.org/10.1002/tox.22673.
Thuy, N. N., & Anh, H. H. (2015). Vulnerability of rice production in Mekong River Delta under impacts from floods, salinity and climate change. International Journal on Advanced Science, Engineering and Information Technology,5, 272–279. https://doi.org/10.18517/ijaseit.5.4.545.
Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s Crust. Geological Society of America Bulletin,72, 175–192.
van Leeuwen, L. C., & Aldenberg, T. (2012). Environmental risk limits for antimony. The Hague: National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport.
Wang, Y., Jiao, J. J., & Cherry, J. A. (2012). Occurrence and geochemical behavior of arsenic in a coastal aquifer–aquitard system of the Pearl River Delta, China. Science of the Total Environment,427–428, 286–297. https://doi.org/10.1016/j.scitotenv.2012.04.006.
Wedepohl, K. H. (2004). The composition of Earth’s upper crust, natural cycles of elements, natural, resources. In E. Merian, M. Anke, M. Ihnat, & M. Stoeppler (Eds.), Elements and their compounds in the environment: Occurrence, analysis and biological relevance (2nd ed., pp. 1–36). Weinheim: WILEY-VCH Verlag GmbH & Co.KGaA.
Wenzel, W. W. (2013). Arsenic. In B. J. Alloway (Ed.), Heavy metals in soils: Trace elements and metalloids in soil and their bioavailability (Vol. 22, pp. 241–282). Dordrecht: Springer.
Yu, G., Zheng, W., Wang, W., Dai, F., Zhang, Z., Yuan, Y., et al. (2017). Health risk assessment of Chinese consumers to Cadmium via dietary intake. Journal of Trace Elements in Medicine and Biology,44, 137–145. https://doi.org/10.1016/j.jtemb.2017.07.003.
Acknowledgements
The authors thank the Department Sedimentology/Environmental Geology and Geo-Gender-Chancenfonds, Faculty of Geoscience and Geography, Göttingen University, for providing chemicals and instruments for the analytical work. The Vietnamese government kindly supported the stay of Thuy Phuong Nguyen at Göttingen University with a research grant.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Nguyen, T.P., Ruppert, H., Pasold, T. et al. Paddy soil geochemistry, uptake of trace elements by rice grains (Oryza sativa) and resulting health risks in the Mekong River Delta, Vietnam. Environ Geochem Health 42, 2377–2397 (2020). https://doi.org/10.1007/s10653-019-00456-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-019-00456-7


