Skip to main content

Advertisement

Log in

Phytostabilization potential of Erica australis L. and Nerium oleander L.: a comparative study in the Riotinto mining area (SW Spain)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Phytostabilization is a green, cost-effective technique for mine rehabilitation and ecological restoration. In this study, the phytostabilization capacity of Erica australis L. and Nerium oleander L. was assessed in the climatic and geochemical context of the Riotinto mining district, southwestern Spain, where both plant species colonize harsh substrates of mine wastes and contaminated river banks. In addition to tolerating extreme acidic conditions (up to pH 3.36 for E. australis), both species were found to grow on substrates very poor in bioavailable nutrients (e.g., N and P) and highly enriched with potentially phytotoxic elements (e.g., Cu, Cd, Pb, S). The selective root absorption of essential elements and the sequestration of potentially toxic elements in the root cortex are the main adaptations that allow the studied species to cope in very limiting edaphic environments. Being capable of a tight elemental homeostatic control and tolerating extreme acidic conditions, E. australis is the best candidate for use in phytostabilization programs, ideally to promote early stages of colonization, improve physical and chemical conditions of substrates and favor the establishing of less tolerant species, such as N. oleander.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BF:

Bioaccumulation factor

CF:

Contamination factor

EC:

Exclusion coefficient

TF:

Translocation factor

References

  • Abreu, M. M., & Magalhaes, M. C. F. (2009). Phytostabilization of soils in mining areas. Case studies from Portugal. In L. Aachen & P. Eichmann (Eds.), Soil remediation (pp. 297–344). New York: Nova Science Publishers.

    Google Scholar 

  • Abreu, M. M., Tavares, M. T., & Batista, M. J. (2008). Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos. Portugal. Journal of Geochemical Exploration,96(2–3), 210–222.

    CAS  Google Scholar 

  • Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany,68(2), 139–148.

    CAS  Google Scholar 

  • Bonnail, E., Macías, F., & Osta, V. (2019). Ecological improvement assessment of a passive remediation technology for acid mine drainage: Water quality biomonitoring using bivalves. Chemosphere,219, 695–703.

    CAS  Google Scholar 

  • Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science,59, 39–45.

    CAS  Google Scholar 

  • Cabrera, F., Clemente, L., Díaz-Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. The Science of Total Environment,242, 117–129.

    CAS  Google Scholar 

  • Canha, N., Freitas, M. C., Anawar, H. M., Dionísio, I., Dung, H. M., Pinto-Gomes, C., et al. (2010). Characterization and phytoremediation of abandoned contaminated mining area in Portugal by INAA. Journal of Radioanalytical and Nuclear Chemistry,286(2), 577–582.

    CAS  Google Scholar 

  • Cánovas, C. R., Hubbard, C. G., Olías, M., Nieto, J. M., Black, S., & Coleman, M. L. (2008). Hydrochemical variations and contaminant load in the Río Tinto (Spain) during flood events. Journal of Hydrology,350(1–2), 25–40.

    Google Scholar 

  • Castillo, S., de la Rosa, J. D., Sánchez de la Campa, A. M., González-Castanedo, Y., Fernández-Caliani, J. C., Gonzalez, I., et al. (2013). Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). The Science of the Total Environment,449, 363–372.

    CAS  Google Scholar 

  • Chen, C., Zhang, H., Wang, A., Lu, M., Shen, Z., & Lian, C. (2015). Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments. Plant and Soil,396(1–2), 215–227.

    CAS  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007). Trace element partitioning and soil particle characterization around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Science of Total Environment,373, 488–500.

    CAS  Google Scholar 

  • de la Fuente, V., Rufo, L., Rodríguez, N., Amils, R., & Zuluaga, J. (2010). Metal accumulation screening of the Río Tinto flora (Huelva, Spain). Biological Trace Element Research,134(3), 318–341.

    CAS  Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronilla, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation,11, 97–114.

    CAS  Google Scholar 

  • Doumas, P., Munoz, M., Banni, M., Becerra, S., Bruneel, O., Casiot, C., et al. (2018). Polymetallic pollution from abandoned mines in Mediterranean regions: A multidisciplinary approach to environmental risks. Regional Environmental Change,18(3), 677–692.

    Google Scholar 

  • Ernst, W. H. O. (2005). Phytoextraction of mine wastes—Options and impossibilities. Chemie der Erde,65, 29–42.

    CAS  Google Scholar 

  • Fernández Espinosa, A. J., & Rossini-Oliva, S. (2006). The composition and relationships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere,62, 1665–1672.

    Google Scholar 

  • Fernández-Caliani, J. C. (2012). Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva. Spain. Environmental Geochemistry and Health,34(1), 123–139.

    Google Scholar 

  • Fernández-Caliani, J. C., Barba-Brioso, C., González, I., & Galán, E. (2008). Heavy metal pollution in soils around the abandoned mine sites of the Iberian pyrite belt (southwest Spain). Water, Air, and Soil pollution,200(1–4), 211–226.

    Google Scholar 

  • Fernández-Remolar, D. C., Prieto-Ballesteros, O., Gómez-Ortíz, D., Fernández-Sampedro, M. P., Sarrazin, P., Gailhanou, M., et al. (2011). Río Tinto sedimentary mineral assemblages: A terrestrial perspective that suggests some formation pathways of phyllosilicates on Mars. Icarus,211, 114–138.

    Google Scholar 

  • Franco, A., Rufo, L., & de la Fuente, V. (2012). Metal concentration and distribution in plant tissues of Nerium oleander (Apocynaceae, Plantae) from extremely acidic and less extremely acidic water courses in the Río Tinto area (Huelva, Spain). Ecological Engineering,47, 87–91.

    Google Scholar 

  • Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: Environmental implications. Environment International,30, 65–72.

    CAS  Google Scholar 

  • Galán, E., Fernández-Caliani, J. C., González, I., Aparicio, P., & Romero, A. (2008). Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. Journal of Geochemical Exploration,98, 89–106.

    Google Scholar 

  • García Palomero, F. (1992). Mineralizaciones de Riotinto (Huelva): Geología, génesis y modelos geológicos para su explotación y evaluación de reservas mineras. In J. García Guinea & J. Martínez Frías (Eds.), Recursos minerales de España (pp. 1325–1352). Madrid: CSIC.

    Google Scholar 

  • Ginocchio, R., León-Lobos, P., Arellano, E. C., Anic, V., Ovalle, J. F., & Baker, A. J. M. (2017). Soil physicochemical factors as environmental filters for spontaneous plant colonization of abandoned tailing dumps. Environmental Science and Pollution Research,24(15), 13484–13496.

    CAS  Google Scholar 

  • Hakansson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Resources,14, 975–1001.

    Google Scholar 

  • Holmgren, G. G. S. (1967). A rapid dithionite–citrate extractable iron procedure. Soil Science Society of America Proceedings,31, 210–211.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2011). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Kuta, E., Jedrzejczyk-Korycińska, M., Cieślak, E., Rostański, A., Szczepaniak, M., Migdałek, G., et al. (2014). Morphological versus genetic diversity of Viola reichenbachiana and V. riviniana (sect. Viola, Violaceae) from soils differing in heavy metal content. Plant Biology,16(5), 924–934.

    CAS  Google Scholar 

  • Leistel, J. M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodovar, G. R., et al. (1998). The volcanic-hosted massive sulphidic deposits of the Iberian Pyritic Belt. Mineralium Deposita,33, 2–30.

    CAS  Google Scholar 

  • Liu, W. H., Zhao, J. Z., Ouyang, Z. Y., Söderlund, L., & Liu, G. H. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International,31(6), 805–812.

    CAS  Google Scholar 

  • Lottermoser, B. G. (2010). Mine wastes: Characterization, treatment and environmental impacts (p. 400). Berlin: Springer.

    Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany,68(1), 1–13.

    CAS  Google Scholar 

  • Markert, B. (1996). Instrumental element and multi-element analysis of plant samples methods and applications. Chichester: Wiley.

    Google Scholar 

  • Márquez-García, B., Hidalgo, P. J., & Córdoba, F. (2009). Effect of different media composition on the micropropagation of Erica andevalensis, a metal accumulator species growing in mining areas (SW Spain). Acta Physiologiae Plantarum,31(3), 661–666.

    Google Scholar 

  • Marschner, P. (2011). Marschner’s mineral nutrition of higher plants. Amsterdam: Academic Press.

    Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology,14, 277–282.

    CAS  Google Scholar 

  • Meier, L. P., & Kahr, G. (1999). Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraetylenepentamine. Clays and Clay Minerals,47, 386–388.

    CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2007). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Bio/Technology,7(1), 47–59.

    Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in arid and semiarid environments-and emerging remediation technology. Environmental Health Perspectives,116, 278–283.

    CAS  Google Scholar 

  • Monaci, F., Leidi, E. O., Mingorance, M. D., Valdés, B., Oliva, S. R., & Bargagli, R. (2011). Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. Journal of Environmental Sciences,23(3), 444–452.

    CAS  Google Scholar 

  • Moreno, D. R. (1978). Clasificación de pH del suelo, contenido de sales y nutrientes asimilables. México, D.F.: INIA-SARH.

    Google Scholar 

  • Napoli, M., Cecchi, S., Grassi, C., Baldi, A., Zanchi, C. A., & Orlandini, S. (2019). Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere,219, 122–129.

    CAS  Google Scholar 

  • Oliveira, M. L. S., Ward, C. R., Izquierdo, M., Sampaio, C. H., de Brum, I., Kautzmann, A. S., et al. (2012). Chemical composition and minerals in pyrite ash of an abandoned sulfuric acid production plant. The Science of the Total Environment,430, 34–47.

    CAS  Google Scholar 

  • Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of Environmental Contamination and Toxicology,213, 113–136.

    CAS  Google Scholar 

  • Quevauviller, P., Lachica, M., Barahona, E., Gómez, A., Rauret, G., Ure, A., et al. (1998). Certified reference material for the quality control of EDTA- and DTPA extractable trace metal contents in calcareous soil (CRM 600). Fresenius’ Journal of Analytical Chemistry,360, 505–511.

    CAS  Google Scholar 

  • Rahman, M. A., Reichman, S. M., De Filippis, L., Sany, S. B. T., & Hasegawa, H. (2016). Phytoremediation of toxic metals in soils and wetlands: Concepts and applications. In Hiroshi Hasegawa, et al. (Eds.), Environmental remediation technologies for metal-contaminated soils (pp. 161–195). Tokyo: Springer.

    Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science,180(2), 169–181.

    CAS  Google Scholar 

  • Rivera, M. B., Giráldez, M. I., & Fernández-Caliani, J. C. (2016). Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk? Science of the Total Environment,560–561, 254–265.

    Google Scholar 

  • Rodríguez, N., Amils, R., Jiménez-Ballesta, R., Rufo, L., & De La Fuente, V. (2007). Heavy metal content in Erica andevalensis: An endemic plant from the extreme acidic environment of tinto river and its soils. Arid Land Research and Management,21(1), 51–65.

    Google Scholar 

  • Romero, A., González, I., & Galán, E. (2006). Estimation of potential pollution of waste mining dumps at Peña del Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Applied Geochemistry,21(7), 1093–1108.

    CAS  Google Scholar 

  • Rossini Oliva, S., Bargagli, R., Monaci, F., Valdés, B., Mingorance, M. D., & Leidi, E. (2009a). Stress responses of Erica andevalensis Cabezudo & Rivera plants induced by polluted water from Tinto River (SW Spain). Ecotoxicology,18, 1058–1067.

    CAS  Google Scholar 

  • Rossini Oliva, S., Mingorance, M. D., Valdés, B., & Leidi, E. O. (2009b). Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis. Plant and Soil,328(1–2), 411–420.

    Google Scholar 

  • Rossini-Oliva, S., Abreu, M. M., & Leidi, E. O. (2018). A review of hazardous elements tolerance in a metallophyte model species: Erica andevalensis. Geoderma,319, 43–51.

    CAS  Google Scholar 

  • Rufo, L., Nuria Rodríguez, N., Amils, R., de la Fuente, V., & Jiménez-Ballesta, R. (2007). Surface geochemistry of soils associated to the Tinto River (Huelva, Spain). Science of the Total Environment,378, 223–227.

    CAS  Google Scholar 

  • Rufo, L., Rodríguez, N., & de la Fuente, V. (2011). Plant communities of extreme acidic waters: The Rio Tinto case. Aquatic Botany,95(2), 129–139.

    CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, B., et al. (2005). FOREGS geochemical atlas of Europe. Part 1. Background information, methodology, and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology,49, 643–668.

    CAS  Google Scholar 

  • Sánchez de la Campa, A. M., de la Rosa, J. D., Fernández-Caliani, J. C., & González-Castanedo, Y. (2011). Impact of abandoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belt). Environmental Research,111(8), 1018–1023.

    Google Scholar 

  • Sarmiento, A. M., Nieto, J. M., Casiot, C., Elbaz-Poulichet, F., & Egal, M. (2009). Inorganic arsenic speciation at river basin scales: The Tinto and Odiel rivers in the Iberian Pyrite Belt, SW Spain. Environmental Pollution,157(4), 1202–1209.

    CAS  Google Scholar 

  • Shahid, M., Dumat, C., Khalid, S., Schreck, E., Xiong, T., & Niazi, N. K. (2016). Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials,325, 36–58.

    Google Scholar 

  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment,39(5), 1112–1126.

    CAS  Google Scholar 

  • Sims, D. B., Hooda, P. S., & Gillmore, G. K. (2013). Mining activities and associated environmental impacts in arid climates: A literature review. Environment and Pollution,2(4), 22–43.

    CAS  Google Scholar 

  • Soldevilla, M., Maranon, T., & Cabrera, F. (1992). Heavy metal content in soil and plants from a pyrite mining area in southwest Spain. Communication in Soil and Plant Analysis,23, 1301–1319.

    CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy-metal levels in estuaries and formation of a pollution index. Helgol Meeresunters,33, 566–575.

    Google Scholar 

  • Trigueros, D., Mingorance, M. D., & Rossini Oliva, S. (2012). Evaluation of the ability of Nerium oleander L. to remediate Pb-contaminated soils. Journal of Geochemical Exploration,114, 126–133.

    CAS  Google Scholar 

  • Venkateswarlu, K., Nirola, R., Kuppusamy, S., Thavamani, P., Naidu, R., & Megharaj, M. (2016). Abandoned metalliferous mines: Ecological impacts and potential approaches for reclamation. Reviews in Environmental Science and Bio/Technology,15(2), 327–354.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Eduardo O. Leidi of the Spanish National Research Council (CSIC), Institute for Natural Resources and Agrobiology of Sevilla, for discussions and comments on the manuscript. This work was partially granted by MICINN contract CGL2006/02860 and by Fundación Areces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossini-Oliva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monaci, F., Trigueros, D., Mingorance, M.D. et al. Phytostabilization potential of Erica australis L. and Nerium oleander L.: a comparative study in the Riotinto mining area (SW Spain). Environ Geochem Health 42, 2345–2360 (2020). https://doi.org/10.1007/s10653-019-00391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00391-7

Keywords

Navigation