Skip to main content

Serum matrix metalloproteinase-9 in children exposed to arsenic from playground dust at elementary schools in Hermosillo, Sonora, Mexico

Abstract

Arsenic exposure in adults has been associated with increased serum matrix metalloproteinase-9 (MMP-9), a biomarker which is associated with chronic respiratory disease, lung inflammation, cardiovascular disease and cancer. The objective of this study was to evaluate the association between serum MMP-9 levels in children, urinary arsenic, arsenic chronic daily intake (CDI) and arsenic exposure from playground dust. This cross-sectional study examined 127 children from five elementary schools, in Hermosillo, Sonora, Mexico. Arsenic was analyzed in the dust using a portable X-ray fluorescence (XRF) analyzer. Total urinary arsenic was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for MMP-9 using ELISA. Arsenic levels in playground dust averaged 16.9 ± 4.6 mg/kg. Urinary arsenic averaged 34.9 ± 17.1 µg/L. Arsenic concentration in playground dust was positively associated with serum MMP-9 levels in crude analyses and after adjustment (P < 0.01), MMP-9 and CDI were positively associated only after adjustment (P < 0.01), and no association was found between MMP-9 and urinary arsenic. In conclusion, our study showed an association in children between serum MMP-9 levels and playground dust arsenic concentrations. Therefore, exposure to arsenic in dust where children spend significant time may manifest toxic effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Arcega-Cabrera, F., Fargher, L., Quesadas-Rojas, M., Moo-Puc, R., Oceguera-Vargas, I., Noreña-Barroso, E., et al. (2018). Environmental exposure of children to toxic trace elements (Hg, Cr, As) in an urban area of Yucatan, Mexico: Water, blood, and urine levels. Bulletin of Environmental Contamination and Toxicology,100(5), 620–626.

    CAS  Google Scholar 

  • Bauvois, B. (2012). New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochemica et Biophysica Acta,1825, 29–36.

    CAS  Google Scholar 

  • Beamer, P. I., Klimecki, W. T., Loh, M., Van Horne, Y. O., Sugeng, A. J., Lothrop, N., et al. (2016). Association of children’s urinary CC16 levels with arsenic concentrations in multiple environmental media. International Journal of Environmental Research and Public Health,13(5), 521.

    Google Scholar 

  • Brézillon, S., Pietraszek, K., Maquart, F. X., & Wegrowski, Y. (2013). Lumican effects in the control of tumour progression and their links with metalloproteinases and integrins. Journal of the Federation of European Biochemical Societies,280(2369), 2381.

    Google Scholar 

  • Burgess, J. L., Kurzius-Spencer, M., O’Rourke, M. K., Littau, S. R., Roberge, J., Meza-Montenegro, M. M., et al. (2013). Environmental arsenic exposure and serum matrix metalloproteinase-9. Journal of Exposure Science & Environmental Epidemiology,23(2), 163–169.

    CAS  Google Scholar 

  • Caceres, D. D., Pino, P., Montesinos, N., Atalah, E., Amigo, H., & Loomis, D. (2005). Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environmental Research,98, 151–159.

    CAS  Google Scholar 

  • Calderon, R. L., Hudgens, E. E., Carty, C., He, B., Le, X. C., Rogers, J., et al. (2013). Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. Environmental Research,126, 134–144.

    CAS  Google Scholar 

  • Charlesworth, S., De Miguel, E., & Ordóñez, A. (2011). A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environmental Geochemistry and Health,33, 103–123.

    CAS  Google Scholar 

  • Chen, H., Lu, X., & Chang, Y. (2014). Heavy metal contamination in dust from kindergartens and elementary schools in Xi’an, China. Environmental Earth Sciences,71, 2701–2709.

    CAS  Google Scholar 

  • Cubadda, F., D’Amato, M., Mancini, F. R., Aureli, F., Raggi, A., Busani, L., et al. (2015). Assessing human exposure to inorganic arsenic in high-arsenic areas of Latium: A biomonitoring study integrated with indicators of dietary intake. Annali di igiene,27, 39–51.

    CAS  Google Scholar 

  • Cubadda, F., Jackson, B. P., Cottingham, K. L., Van Horne, Y. O., & Kurzius-Spencer, M. (2017). Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Science of The Total Environment,579, 1228–1239.

    CAS  Google Scholar 

  • Dagouassat, M., Lanone, S., & Boczkowski, J. (2012). Interaction of matrix metalloproteinases with pulmonary pollutants. European Respiratory Journal,39, 1021–1032.

    CAS  Google Scholar 

  • Del Rio-Salas, R., Ruiz, J., De la O-Villanueva, M., Valencia-Moreno, M., Moreno-Rodríguez, V., Gómez-Alvarez, A., et al. (2012). Tracing geogenic and anthropogenic sources in urban dusts: Insights from lead isotopes. Atmospheric Environment,60, 202–210.

    CAS  Google Scholar 

  • Elom, N. I., Entwistle, J. A., & Dean, J. R. (2013). How safe is the playground? An environmental health risk assessment of As and Pb levels in school playing fields in NE England. Environmental Chemistry Letters,11, 343–351.

    CAS  Google Scholar 

  • Farzan, S. F., Howe, C. G., Zens, M. S., Palys, T., Channon, J. Y., Li, Z., et al. (2017). Urine arsenic and arsenic metabolites in U.S. adults and biomarkers of inflammation, oxidative stress, and endothelial dysfunction: A cross-sectional study. Environmental Health Perspectives,125(12), 127002.

    Google Scholar 

  • Gamiño-Gutiérrez, S. P., González-Pérez, C. I., Gonsebatt, M. E., & Monroy-Fernández, M. G. (2013). Arsenic and lead contamination in urban soils of Villa de la Paz (Mexico) affected by historical mine wastes and its effect on children’s health studies by micronucleated exfoliated cells assay. Environmental Geochemistry and Health,35, 37–51.

    Google Scholar 

  • García-Rico, L., Meza-Figueroa, D., Gandolfi, A. J., Del Río-Salas, R., Romero, F. M., & Meza-Montenegro, M. M. (2016). Dust metal sources in an urbanized arid zone: Implications for health risk assessments. Archives of Environmental Contamination and Toxicology,70, 522–533.

    Google Scholar 

  • Heck, J. E., Andrew, A. S., Onega, T., Rigas, J. R., Jackson, B. P., Karagas, M. R., et al. (2009). Lung cancer in a U.S. population with low to moderate arsenic exposure. Environmental Health Perspectives,117, 1718–1723.

    CAS  Google Scholar 

  • Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Biaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution,159, 1215–1221.

    CAS  Google Scholar 

  • IARC. (2012). A review of human carcinogens: Arsenic, metals, fibres, and dusts. Lyon: World Health Organization Press.

    Google Scholar 

  • INEGI. (2017). Estadísticas a propósito del día de muertos (2 de noviembre). México. https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2017/muertos2017_Nal.pdf. Accessed 31 July 2019.

  • Iribarren, I., Chacón, E., & De Miguel, E. (2009). A bayesian approach to probabilistic risk assessment in municipal playgrounds. Archives of Environmental Contamination and Toxicology,56, 165–172.

    CAS  Google Scholar 

  • Jonsson, A., Hjalmarsson, C., Falk, P., & Ivarsson, M. L. (2016). Levels of matrix metalloproteinases differ in plasma and serum—Aspects regarding analysis of biological markers in cancer. British Journal of Cancer,115(6), 703–706. https://doi.org/10.1038/bjc.2016.127.

    CAS  Article  Google Scholar 

  • Josyula, A. B., Poplin, G. S., Kurzius-Spencer, M., McClellen, H. E., Kopplin, M. J., Sturup, S., et al. (2006). Environmental arsenic exposure and sputum metalloproteinase concentrations. Environmental Research,102, 283–290.

    CAS  Google Scholar 

  • Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell,141, 52–67.

    CAS  Google Scholar 

  • Kong, S., Lu, B., Bai, Z., Zhao, X., Chen, L., Han, B., et al. (2011b). Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city. Atmospheric Environment,45, 4192–4204.

    CAS  Google Scholar 

  • Kong, S., Lu, B., Ji, Y., Zhao, X., Chen, L., Li, Z., et al. (2011a). Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city. Microchemical Journal,98, 280–290.

    CAS  Google Scholar 

  • Kurzius-Spencer, M., Harris, R. B., Hartz, V., Roberge, J., Hsu, C. H., O’Rourke, M. K., et al. (2015). Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic. Journal of Exposure Science & Environmental Epidemiology,26(5), 445–451.

    Google Scholar 

  • Lantz, R. C., Chau, B., Sarihan, P., Witten, M. L., Pivniouk, V. I., & Chen, G. J. (2009). In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicology and Applied Pharmacology,235, 105–113.

    CAS  Google Scholar 

  • Loh, M. M., Sugeng, A., Lothrop, N., Klimecki, W., Cox, M., Wilkinson, S. T., et al. (2016). Multimedia exposures to arsenic and lead for children near an inactive mine tailings and smelter site. Environmental Research,146, 331–339.

    CAS  Google Scholar 

  • McClintock, T. R., Chen, Y., Bundschuh, J., Oliver, J. T., Navoni, J., Olmos, V., et al. (2012). Arsenic exposure in Latin America: Biomarkers, risk assessments and related health effects. Science of the Total Environment,429, 76–91.

    CAS  Google Scholar 

  • Meza-Figueroa, D., De la O-Villanueva, M., & De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment,41, 276–288.

    CAS  Google Scholar 

  • Meza-Figueroa, D., González-Grijalva, B., Del Río-Salas, R., Coimbra, R., Ochoa-Landin, L., & Moreno-Rodríguez, V. (2016). Traffic signatures in suspended dust at pedestrian levels in semiarid zones: Implications for human exposure. Atmospheric Environment,138, 4–14.

    CAS  Google Scholar 

  • Meza, M. M., Kopplin, M. J., Burgess, J. L., & Gandolfi, A. J. (2004). Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora México. Environmental Research,96, 119–126.

    CAS  Google Scholar 

  • Nadarajah, V. D., Putten, M., van Chaouch, A., Garrood, P., Straub, V., Lochmüller, H., et al. (2011). Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscular Disorders,21(569), 578.

    Google Scholar 

  • NOM-147-SEMARNAT/SSA1-2004. NORMA Oficial Mexicana, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación 2007.

  • Olivas-Calderón, E., Recio-Vega, R., Gandolfi, A. J., Lantz, R. C., González-Cortes, T., Gonzalez-De Alba, C., et al. (2015). Lung inflammation biomarkers and lung function in children chronically exposed to arsenic. Toxicology and Applied Pharmacology,287(2), 161–167.

    Google Scholar 

  • Olsen, C. E., Liguori, A. E., Zong, Y., Lantz, R. C., Burgess, J. L., & Boitano, S. (2008). Arsenic upregulates MMP-9 and inhibits wound repair in human airway epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology,295, L293–L302.

    CAS  Google Scholar 

  • Pérez-Vázquez, J., Flores-Ramírez, R., Ochoa-Martínez, A. C., Carrizales-Yáñez, L., Ilizaliturri-Hernández, C. A., Moctezuma-González, J., et al. (2016). Human health risks associated with heavy metals in soil in different areas of San Luis Potosí, México. Human and Ecological Risk Assessment,22, 323–336.

    Google Scholar 

  • Roberge, J., O’Rourke, M. K., Meza-Montenegro, M. M., Gutiérrez-Millán, L. E., Burgess, J. L., & Harris, R. B. (2012). Binational arsenic exposure survey: Methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations. International Journal of Environmental Research Public Health,9, 1051–1067.

    CAS  Google Scholar 

  • Shaowei, W., Furong, D., Yu, H., Masayuki, S., Xin, W., Chanjuan, Z., et al. (2013). Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The healthy volunteer natural relocation study. Journal of Hazardous Materials,26, 183–191.

    Google Scholar 

  • Torres-Sánchez, L., López-Carrillo, L., Rosado, J. L., Rodriguez, V. M., Vera-Aguilar, E., Kordas, K., et al. (2016). Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. Environmental Research,151, 38–43.

    Google Scholar 

  • USEPA. (2013). Regional screening levels (RSL) for chemical contaminants at superfund sites. Washington, D.C.: USEPA.

    Google Scholar 

  • Ventura, I., Vega, A., Chacon, P., Chamorro, C., Aroca, R., Gomez, E., et al. (2014). Neutrophils from allergic asthmatic patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy,69, 898–905.

    CAS  Google Scholar 

  • von Lindern, I., Spalinger, S., Stifelman, M. L., Stanek, L. W., & Bartrem, C. (2016). Estimating children’s soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill superfund site in Idaho. Environmental Health Perspectives,124(9), 1462–1470.

    Google Scholar 

  • Wang, B., Lin, C., Zhang, X., Duan, X., Xu, D., Cheng, H., et al. (2018). A soil ingestion pilot study for teenage children in China. Chemosphere,202, 40–47.

    CAS  Google Scholar 

  • WHO. (2001). Arsenic and arsenic compounds, 2nd edn. Environmental health criteria 224. Geneva: WHO.

    Google Scholar 

  • Witten, M. L., Chau, B., Sáez, E., Boitano, S., & Lantz, R. C. (2019). Early life inhalation exposure to mine tailings dust affects lung development. Toxicology and Applied Pharmacology,365, 124–132.

    CAS  Google Scholar 

  • Wyatt, C. J., Quiroga, V. L., Acosta, R. T. O., & Méndez, R. O. (1998). Excretion of arsenic (As) in urine of children, 7–11 years, exposed to elevated levels of As in the city water supply in Hermosillo, Sonora, México. Environmental Research,78, 19–24.

    CAS  Google Scholar 

  • Yusà, V., Pérez, R., Sánchez, A., Pardo, O., & Roca, M. (2018). Exposure and risk assessment to arsenic species in Spanish children using biomonitoring. Science of the Total Environment,628–629, 302–309.

    Google Scholar 

Download references

Acknowledgements

This work was supported by funds provided by National Council of Science and Technology (CONACYT), through the Grants: CB-167676, FONSALUD-S0008-2014-1-233976 and INFR-2016-1-269884, ITSON/PROFAPI-2018-0072. The authors would like to thank Ana Lilia López Duarte and Juan Fco. Maldonado Escalante for their technical assistance. This publication was financed with PFCE resources 2018. Special thanks to Dr. Paul W. Kilpatrick for his support with the English edition and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria M. Meza-Montenegro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Rico, L., Meza-Figueroa, D., Beamer, P.I. et al. Serum matrix metalloproteinase-9 in children exposed to arsenic from playground dust at elementary schools in Hermosillo, Sonora, Mexico. Environ Geochem Health 42, 499–511 (2020). https://doi.org/10.1007/s10653-019-00384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00384-6

Keywords

  • Serum MMP-9
  • Arsenic
  • Playground dust
  • Children