Skip to main content

Investigations on chemical composition and natural radioactivity levels from salt water and peloid used in pelotherapy from the Techirghiol Lake, Romania

Abstract

The work presents the historical evolution, objectives, goals, concepts, chemical and radiometric methods, results and conclusions for salt waters and natural peloids used in pelotherapy. This study assesses chemical composition, natural radioactivity concentrations and the radiological hazard in peloid and salt water samples, from ten places in the Techirghiol Lake from Romania. Pelotherapy is a very important procedure, and thus, the materials used for this purpose must be well characterized to guaranty safety use. Concentrations of elements such as Sr, Ba, Mn, Fe, Sb, Zn, Cu, Pb, Ti, Ni, Cr, As have been measured using ICP-OES analytical technique. The natural radionuclides such as 238U, 226Ra, 232Th and 40K have been determined by gamma-ray spectrometry. The average activity concentrations were of 0.48 ± 0.10 Bq/kg for 238U, 0.60 ± 0.10 Bq/kg for 226Ra, 0.30 ± 0.08 Bq/kg for 232Th and 17.5 ± 1.3 Bq/kg for 40K for salt water samples. Also, the mean activity concentrations for peloids were: 5.70 ± 1.00 Bq/kg for 238U, 6.85 ± 1.60 Bq/kg for 232Th, 15.3 ± 3.7 Bq/kg for 226Ra and 95.8 ± 5.5 Bq/kg for 40K. The results from this study contribute to the identification of possible contaminants in the salt water and peloid, and their association with the potential ecological and human health risk. In this context, of using salt water and peloid in a relatively long treatment period, several radiological indices have been calculated, to determine if the radionuclide’s content can be also harmful to human health. The assessment indicates that humans are not exposed to concentrations of metal contaminants higher than the international recommended values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Baron, J., Legret, M., & Astruc, M. (1990). Study of interactions between heavy metals and sewage sludges. Determination of stability constants and complexation capacities of complexes formed with Cu and Cd. Environmental Technology,11, 151–162.

    CAS  Google Scholar 

  • Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., Galindo, A., et al. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science,49(3), 205–212.

    CAS  Google Scholar 

  • Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and byproduct. Health Physics,48, 87–95.

    CAS  Google Scholar 

  • Calin, M. R., Druker, A. E., & Radulescu, I. (2013). The calculation of the detection efficiency in the calibration of gross alpha–beta systems. Journal of Radioanalytical and Nuclear Chemistry,295, 283–288.

    CAS  Google Scholar 

  • Calin, M. R., Radulescu, I., Ion, A. C., & Sirbu, F. (2016). Radiochemical investigations on natural mineral waters from Bucovina region, Romania. Romanian Journal of Physics,61, 1051–1066.

    Google Scholar 

  • Calisevici, M. N., Perju, D., Dumitrel, G. A., Glevitzky, M., & Moldovan, R. C. (2009). Determination of anions and cations content in Romanian drinking waters by HPIC method. Chemical Bulletin of Politehnica University,54, 26–30.

    Google Scholar 

  • Cantaluppi, C., Fasson, A., Ceccotto, F., Cianchi, A., & Degetto, S. (2014). Radionuclides concentration in water and mud of euganean thermal district. International Journal of Environmental Research,8, 237–248.

    CAS  Google Scholar 

  • Capra, L., Manolache, M., Ion, I., & Ion, A. C. (2016). Validation of a method for determination of antimony in drinking water by ICP-OES. UPB Scientific Bulletin, Series B: Chemistry and Materials Science,78, 103–112.

    CAS  Google Scholar 

  • Carretero, M. I., Pozo, M., Legido, J. L., Fernández-González, M. V., Delgado, R., Gómez, I., et al. (2014). Assessment of three Spanish clays for their use in pelotherapy. Applied Clay Science,99, 131–143.

    CAS  Google Scholar 

  • Ciobotaru, C., Minea, M., Surdu, O., & Surdu, T. V. (2009). Statistic evaluation of the clinical benefits of rehabilitation in patients with spine cord injury undergoing complex treatment with specific therapeutic factors from Techirghiol Health Resort. Advanced technologies for enhanced quality of life, 2009. AT-EQUAL’09. https://doi.org/10.1109/at-equal.2009.23.

  • Da Silva, P. S. C., Torrecilha, J. K., de Macedo Gouvea, P. V., Máduar, M. F., de Oliveira, S. M. B., & Scapin, M. A. (2015). Chemical and radiological characterization of Peruíbe Black Mud. Applied Clay Science,118, 221–230.

    Google Scholar 

  • Diaz-Rizo, O., Gelen-Rudnikas, A., Arado-Lopez, J. O., D’Alessandro, Rodriguez K., Gonzalez-Hernandez, P., Fagundo-Castillo, J. R., et al. (2013). Radioactivity levels and radiation hazard of healing mud from San Diego River, Cuba. Journal of Radioanalytical and Nuclear Chemistry,295, 1293–1297.

    Google Scholar 

  • El-Arabi, A. M. (2005). Natural radioactivity in sand used in thermal therapy at the Red Sea Coast. Journal of Environmental Radioactivity,81, 11–19.

    CAS  Google Scholar 

  • El-Taher, A., Alshahri, F., & Elsaman, R. (2018a). Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf. Applied Radiation and Isotopes,132, 95–104.

    CAS  Google Scholar 

  • El-Taher, A., Zakaly, H. M. H., & Elsaman, R. (2018b). Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbors in the Egyptian Red Sea coast. Applied Radiation and Isotopes,131, 13–22.

    CAS  Google Scholar 

  • Environmental Protection Agency (EPA). (2012). Summary of maximum allowable concentrations of chemical constituents in uncontaminated soil used as fill material at regulated fill operations. www.epa.state.il.us/land/ccdd/new-max-allowable-concentrations.

  • Environmental Protection Agency (EPA). (2007). Method 9056A determination of inorganic anions by ion chromatography. https://www.epa.gov/hw-sw846/sw-846-test-method-9056a-determination-inorganic-anions-ion-chromatography. Accessed 30 May 2019.

  • Gâştescu, P., Breţcan, P., & Teodorescu, D. C. (2016). The lakes of the Romanian Black Sea coast. Man-induced changes, water regime, present state. Romanian Journal of Geography,60, 27–42.

    Google Scholar 

  • Glavaš, N., Mourelle, M. L., Gómez, C. P., Legido, J. L., Šmuc, N. R., Dolenec, M., et al. (2017). The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Applied Clay Science,135, 119–128.

    Google Scholar 

  • Gomes, C., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., et al. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science,75–76, 28–38.

    Google Scholar 

  • Gomes, T., Song, Y., Brede, D. A., Xie, L., Gutzkow, K. B., Salbu, B., et al. (2018). Gamma radiation induces dose-dependent oxidative stress and transcriptional alterations in the freshwater crustacean Daphnia magna. Science of the Total Environment,628–629, 206–216.

    Google Scholar 

  • Grigoras, G., Cuculeanu, V., Ene, G., Mocioaca, G., & Deneanu, A. (2012). Air pollution dispersion modeling in a polluted industrial area of complex terrain from Romania. Romanian Reports in Physics,64, 173–186.

    CAS  Google Scholar 

  • ICRP-60. (1991). Recommendations of the international commission on radiological protection. Oxford: Pergamon Press. ISSN 0146-6453.

  • ICRP-103. (2007). Recommendations of the international commission on radiological protection (Vol. 37). Elsevier. ISSN 0146-6453.

  • Jonas, J., Somlai, J., Csordas, A., Toth-Bodrogi, E., & Kovacs, T. (2018). Radiological survey of the covered and uncovered drilling mud depository. Journal of Environmental Radioactivity,188, 30–37.

    CAS  Google Scholar 

  • Karakaya, M. C., Dogru, M., Karakaya, N., Vural, H. C., Kuluozturk, F., & Bal, S. S. (2015). Radioactivity concentrations and dose assessments of therapeutic peloids from some Turkish spas. Clay Minerals,50, 221–232.

    CAS  Google Scholar 

  • Kikouama, O. J. R., & Balde, L. (2010). From edible clay to a clay-containing formulation for optimization of oral delivery of some trace elements: A review. International Journal of Food Sciences and Nutrition,61, 803–822.

    CAS  Google Scholar 

  • Knorst-Fouran, A., Casás, L. M., Legido, J. L., Coussine, C., Bessières, D., Plantier, F., et al. (2012). Influence of dilution on the thermophysical properties of Dax peloid (TERDAX®). Thermochimica Acta,539, 34–38.

    CAS  Google Scholar 

  • Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S., & Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA,165, 454–464.

    CAS  Google Scholar 

  • Leschber, R., Davis, R. D., & L’Hermite, P. (1985). Chemical methods for assessing bio-available metals in sludges and soils. London: Elsevier Applied Science Publishers.

    Google Scholar 

  • MacDonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology,5, 253–278.

    CAS  Google Scholar 

  • Maor, Z., Henis, Y., Alon, Y., Orlov, E., Sorensen, K. B., & Oren, A. (2006). Antimicrobial properties of Dead Sea black mineral mud. International Journal of Dermatology,45, 504–511.

    CAS  Google Scholar 

  • Mardomingo, I. J., Jiménez-Hernández, M. E., Moreno, L., de la Losa, A., de la Cruz, M. T., & Casermeiro, M. A. (2015). Application of high doses of organic amendments in a Mediterranean agricultural soil: An approach for assessing the risk of groundwater contamination. CATENA,131, 74–83.

    Google Scholar 

  • Marin, V., Surdu, O., Profir, D., & Demirgian, S. (2012). Peloidotherapy in osteoarthritis-modulation of oxidative stress. In Q. Chen (Ed.), Osteoarthritis—Diagnosis, treatment and surgery (pp. 143–156). Rijeka: In Tech. ISBN 978-953-51-0168-0.

    Google Scholar 

  • Meng, H. B., Wang, T. R., Guo, B. Y., Hashi, Y., Guo, C. X., & Lin, J. M. (2008). Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography. Talanta,76, 241–245.

    CAS  Google Scholar 

  • Muñoz, M. S., Rodríguez, C. M., Rudnikas, A. G., Rizo, O. D., Martínez-Santos, M., Ruiz-Romera, E., et al. (2015). Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Science,104, 36–47.

    Google Scholar 

  • Munteanu, C. (2012). Therapeutic peloid (in Romanian “Namolul therapeutic”) Ed. Balneara, Bucharest. ISBN 978-606-93159-1-0.

  • Munteanu, C., & Dumitrascu, M. (2011). Therapeutic muds. Balneo-Research Journal,2, 12–16.

    Google Scholar 

  • Otansev, P. S., Taskin, H., Bassari, A., & Varinlioğlu, A. (2016). Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere,154, 266–275.

    CAS  Google Scholar 

  • Pintilie, V., Ene, A., Georgescu, L. P., & Moraru, D. I. (2017). Gross alpha, gross beta and 40K activities and daily effective dose due to natural radionuclides from food supplements. Romanian Journal of Physics,62(703), 1–9.

    Google Scholar 

  • Quintela, A., Terroso, D., Da Silva, E. F., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals,47, 441–451.

    CAS  Google Scholar 

  • Radulescu, I., & Calin, M. R. (2014). Reliability and performances of a high-purity gamma spectrometry system used for environmental measurements. Journal of Radioanalytical and Nuclear Chemistry,301, 141–146.

    CAS  Google Scholar 

  • Radulescu, I., Calin, M. R., Ion, I., Ion, A. C., Capra, L., & Simion, C. A. (2017). Gross alpha, gross beta and gamma activities in bottled natural mineral water from Romania. Romanian Reports in Physics,69(710), 1–10.

    Google Scholar 

  • Radulescu, C., Dulama, I. D., Stihi, C., Ionita, I., Chilian, A., Necula, C., et al. (2014). Determination of heavy metals in water and therapeutic mud by atomic absorption spectrometry. Romanian Journal of Physics,59, 1057–1066.

    Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick (Ed.), The crust (pp. 1–64). Oxford: Elsevier-Pergamon.

    Google Scholar 

  • Sarojam, P. (2010). ICP-optical emission spectroscopy, application note. Shelton, CT: PerkinElmer, Inc.

    Google Scholar 

  • Shaltout, A. A., Ahmed, S. I., Abayazeed, S. D., El-Taher, A., & Abd-Elkader, O. H. (2017). Quantitative elemental analysis and natural radioactivity levels of mud and salt collected from the Dead Sea, Jordan. Microchemical Journal,133, 352–357.

    CAS  Google Scholar 

  • Tanase, I. G., Pana, A., Radu, G. L., & Buleandra, M. (2007). Validation of analytical methods—Theoretical principles and studies case. Bucharest: Printech Publishing. (in Romanian).

    Google Scholar 

  • Tateo, F., Ravaglioli, A., Andreoli, C., Bonina, F., Coiro, V., Degetto, S., et al. (2009). The in vitro percutaneous migration of chemical elements from a thermal mud for healing use. Applied Clay Science,44, 83–94.

    CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta,28, 1273–1285.

    CAS  Google Scholar 

  • Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: Relationships with bioavailability. Hydrobiologia,149, 43–52.

    CAS  Google Scholar 

  • Tufail, M. (2012). Radium equivalent activity in the light of UNSCEAR report. Environmental Monitoring and Assessment,184, 5663–5667.

    CAS  Google Scholar 

  • UNSCEAR. (1993). United nations scientific committee on the effects of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York.

  • UNSCEAR. (2000). United nations scientific committee on the effects of atomic radiation. Sources, effects and risks of ionizing radiation. Report to the General Assembly with annex B, United Nations, New York.

  • Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: Perspectives of innovations. Applied Clay Science,36, 141–147.

    CAS  Google Scholar 

  • Zorer, O. S., Ceylan, H., & Dogru, M. (2009). Determination of heavy metals and comparison to gross radioactivity concentration in soil and sediment samples of the Bendamihi river basin (Van, Turkey). Water, Air, and Soil Pollution,196, 75–87.

    Google Scholar 

Download references

Acknowledgements

This research was performed in the frame of ERA-NET SIINN, funded by the European Commission within the 7th Framework Program and supported by the Romanian Executive Agency for Higher Education and RDI Funding—UEFISCDI—and by the PNCDI III Program, Project No. PN 18 09 02 02/2018 (Romanian Ministry for Education and Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Radulescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calin, M.R., Radulescu, I., Ion, A.C. et al. Investigations on chemical composition and natural radioactivity levels from salt water and peloid used in pelotherapy from the Techirghiol Lake, Romania. Environ Geochem Health 42, 513–529 (2020). https://doi.org/10.1007/s10653-019-00382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00382-8

Keywords

  • Natural peloid
  • Natural radioactivity
  • Salt water
  • Dose assessment
  • Pelotherapy