Skip to main content

ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health

Abstract

The progressive increase in nanoparticles (NPs) applications and their potential release into the environment because the majority of them end up in the soil without proper care have drawn considerable attention to the public health, which has become an increasingly important area of research. It is required to understand ecological threats of NPs before applications. Once NPs are released into the environment, they are subjected to translocation and go through several modifications, such as bio/geo-transformation which plays a significant role in determination of ultimate fate in the environment. The interaction between plants and NPs is an important aspect of the risk assessment. The plants growing in a contaminated medium may significantly pose a threat to human health via the food chain. Metal oxide NPs ZnO and CuO, the most important NPs, are highly toxic to a wide range of organisms. Exposure and effects of CuO and ZnO NPs on soil biota and human health are critically discussed in this study. The potential benefits and unintentional dangers of NPs to the environment and human health are essential to evaluate and expected to produce less toxic and more degradable NPs to minimize the environmental risk in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adams, J., Wright, M., Wagner, H., Valiente, J., Britt, D., & Anderson, A. (2017). Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiology and Biochemistry,110, 108–117.

    CAS  Google Scholar 

  2. Adeleye, A. S., Oranu, E. A., Tao, M., & Keller, A. A. (2016). Release and detection of nanosized copper from a commercial antifouling paint. Water Research,102, 374–382.

    CAS  Google Scholar 

  3. Ahmed, B., Khan, M. S., & Musarrat, J. (2018). Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environmental Pollution,240, 802–816.

    CAS  Google Scholar 

  4. Anreddy, R. N. R. (2018). Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicology Reports,5, 903–904.

    CAS  Google Scholar 

  5. Assadian, E., Zarei, M. H., Gilani, A. G., Farshin, M., Degampanah, H., & Pourahmad, J. (2018). Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research,184, 350–357.

    CAS  Google Scholar 

  6. Azizi, M., Ghourchian, H., Yazdian, F., Dashtestani, F., & AlizadehZeinabad, H. (2017). Cytotoxic effect of albumin coated copper nanoparticle on human breast cancer cells of MDA-MB 231. PLoS ONE,12, e0188639–e0188639.

    Google Scholar 

  7. Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C. M., Jose-Yacaman, M., Peralta-Videa, J. R., et al. (2015). Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Science of the Total Environment,515–516, 60–69.

    Google Scholar 

  8. BBC (2018). Nanocomposites, Nanoparticles, Nanoclays and Nanotubes: Global Markets to 2022. Accessed 20 December 2018.

  9. Boxall, A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., et al. (2007). Current and future predicted environmental exposure to engineered nanoparticles. York: Central Science Laboratory.

    Google Scholar 

  10. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist,173, 677–702.

    CAS  Google Scholar 

  11. Bundschuh, M., Filser, J., Luderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., et al. (2018). Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe,30, 36.

    Google Scholar 

  12. Chai, H., Yao, J., Sun, J., Zhang, C., Liu, W., Zhu, M., et al. (2015). The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bulletin of Environmental Contamination and Toxicology,94, 490–495.

    CAS  Google Scholar 

  13. Chen, P., Wang, H., He, M., Chen, B., Yang, B., & Hu, B. (2019). Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicology and Environmental Safety,171, 337–346.

    CAS  Google Scholar 

  14. Concha-Guerrero, S. I., Brito, E. M. S., Piñón-Castillo, H. A., Tarango-Rivero, S. H., Caretta, C. A., Luna-Velasco, A., et al. (2014). Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. Journal of Nanomaterials, 2014, 1–13.

    Google Scholar 

  15. Connolly, M., Fernandez, M., Conde, E., Torrent, F., Navas, J. M., & Fernandez-Cruz, M. L. (2016). Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Science of the Total Environment,551–552, 334–343.

    Google Scholar 

  16. Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., van den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: a review. Critical Reviews in Environmental Science and Technology,44, 2720–2764.

    CAS  Google Scholar 

  17. Cota-Ruiz, K., Delgado-Rios, M., Martínez-Martínez, A., Núñez-Gastelum, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Current findings on terrestrial plants – Engineered nanomaterial interactions: Are plants capable of phytoremediating nanomaterials from soil? Current Opinion in Environmental Science & Health,6, 9–15.

    Google Scholar 

  18. Da Costa, M. V. J., & Sharma, P. K. (2015). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica,54, 110–119.

    Google Scholar 

  19. Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology,97, 702–708.

    CAS  Google Scholar 

  20. Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., et al. (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 14(9), 1125.

    Google Scholar 

  21. Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., & Guo, H. (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring,13, 822–828.

    CAS  Google Scholar 

  22. Feng, X., Yan, Y., Wan, B., Li, W., Jaisi, D. P., Zheng, L., et al. (2016). Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate. Environmental Science and Technology,50, 5651–5660.

    CAS  Google Scholar 

  23. Fernández-Luqueño, F., Medina-Pérez, G., López-Valdez, F., Gutiérrez-Ramírez, R., Campos-Montiel, R. G., Vázquez-Núñez, E., et al. (2018). Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers. In F. López-Valdez & F. Fernández-Luqueño (Eds.), Agricultural Nanobiotechnology (pp. 3–16). Cham: Springer.

    Google Scholar 

  24. Gajjar, P., Pettee, B., Britt, D. W., Huang, W., Johnson, W. P., & Anderson, A. J. (2009). Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. Journal of Biological Engineering,3, 9.

    Google Scholar 

  25. Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., et al. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environmental Science and Technology,52, 2888–2897.

    CAS  Google Scholar 

  26. García-Gómez, C., Fernández, M. D., García, S., Obrador, A. F., Letón, M., & Babín, M. (2018). Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environmental Science and Pollution Research,25, 28140–28152.

    Google Scholar 

  27. Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science and Technology,45, 1659–1664.

    CAS  Google Scholar 

  28. Ghosh, M., Sinha, S., Jothiramajayam, M., Jana, A., Nag, A., & Mukherjee, A. (2016). Cyto-genotoxicity and oxidative stress induced by zinc oxide nanoparticle in human lymphocyte cells in vitro and Swiss albino male mice in vivo. Food and Chemical Toxicology,97, 286–296.

    CAS  Google Scholar 

  29. Gogos, A., Thalmann, B., Voegelin, A., & Kaegi, R. (2017). Sulfidation kinetics of copper oxide nanoparticles. Environmental Science: Nano,4, 1733–1741.

    CAS  Google Scholar 

  30. Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled Environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science and Technology,43, 9216–9222.

    CAS  Google Scholar 

  31. Hansen, S., Heggelund, L. R., Revilla Besora, P., Mackevica, A., Boldrin, A., & Baun, A. (2016). Nanoproducts–what is actually available to European consumers? Environmental Science: Nano,3, 169–180.

    Google Scholar 

  32. Kasemets, K., Ivask, A., Dubourguier, H. C., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro,23, 1116–1122.

    CAS  Google Scholar 

  33. Katsumiti, A., Thorley, A. J., Arostegui, I., Reip, P., Valsami-Jones, E., Tetley, T. D., et al. (2018). Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Toxicology in Vitro,48, 146–158.

    CAS  Google Scholar 

  34. Keller, A. A., Adeleye, A. S., Conway, J. R., Garner, K. L., Zhao, L., Cherr, G. N., et al. (2017). Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact,7, 28–40.

    Google Scholar 

  35. Keller, A. A., & Lazareva, A. (2013). Predicted releases of engineered nanomaterials: From global to regional to local. Environmental Science & Technology Letters,1, 65–70.

    Google Scholar 

  36. Keller, A. A., McFerran, S., Lazareva, A., & Suh, S. (2013). Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research,15(6), 1692.

    Google Scholar 

  37. Kranner, I., & Colville, L. (2011). Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany,72, 93–105.

    CAS  Google Scholar 

  38. Lalau, C. M., Mohedano Rde, A., Schmidt, E. C., Bouzon, Z. L., Ouriques, L. C., dos Santos, R. W., et al. (2015). Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma,252, 221–229.

    CAS  Google Scholar 

  39. Lee, S., Chung, H., Kim, S., & Lee, I. (2013). The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum Esculentum. Water, Air, and Soil pollution,224(9), 1668.

    Google Scholar 

  40. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology,42, 5580–5585.

    CAS  Google Scholar 

  41. Liu, J., Feng, X., Wei, L., Chen, L., Song, B., & Shao, L. (2016). The toxicology of ion-shedding zinc oxide nanoparticles. Critical Reviews in Toxicology,46, 348–384.

    CAS  Google Scholar 

  42. Lofts, S., Criel, P., Janssen, C. R., Lock, K., McGrath, S. P., Oorts, K., et al. (2013). Modelling the effects of copper on soil organisms and processes using the free ion approach: Towards a multi-species toxicity model. Environmental Pollution,178, 244–253.

    CAS  Google Scholar 

  43. Lopez-Moreno, M. L., De La Rosa, G., Hernandez-Viezcas, J. A., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., et al. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 NPs on soybean (Glycine max) plants. Environmental Science and Technology,44, 7315–7320.

    CAS  Google Scholar 

  44. Loureiro, S., Tourinho, P. S., Cornelis, G., Van Den Brink, N. W., Díez-Ortiz, M., Vázquez-Campos, S., et al. (2018). Nanomaterials as Soil Pollutants (pp. 161–190). In Soil Pollution: From Monitoring to Remediation.

    Google Scholar 

  45. Lowry, G. V., Gregory, K. B., Apte, S. C., & Lead, J. R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology,46, 6893–6899.

    CAS  Google Scholar 

  46. Lu, X., Miousse, I. R., Pirela, S. V., Melnyk, S., Koturbash, I., & Demokritou, P. (2016). Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology,10, 140–150.

    CAS  Google Scholar 

  47. Ma, R., Stegemeier, J., Levard, C., Dale, J. G., Noack, C. W., Yang, T., et al. (2014). Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environmental Science: Nano,1, 347–357.

    CAS  Google Scholar 

  48. Marschner, H. (1995). Diagnosis of Deficiency and Toxicity of Mineral Nutrients. In H. Marschner (Ed.), Mineral Nutrition of Higher Plants (2nd ed., pp. 461–479). London: Academic Press.

    Google Scholar 

  49. McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., et al. (2017). Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Science of the Total Environment,575, 231–246.

    CAS  Google Scholar 

  50. Mousavi, K. S. M., Lahouti, M., Ganjeali, A., & Entezari, M. H. (2015). Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environmental Science and Pollution Research,22, 10733–10743.

    Google Scholar 

  51. Mudunkotuwa, I. A., Pettibone, J. M., & Grassian, V. H. (2012). Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environmental Science and Technology,46, 7001–7010.

    CAS  Google Scholar 

  52. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution,150, 5–22.

    CAS  Google Scholar 

  53. Peng, C., Duan, D., Xu, C., Chen, Y., Sun, L., Zhang, H., et al. (2015). Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environmental Pollution,197, 99–107.

    CAS  Google Scholar 

  54. Peng, Y. H., Tsai, Y. C., Hsiung, C. E., Lin, Y. H., & Shih, Y. H. (2017). Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. Journal of Hazardous Materials,322, 348–356.

    CAS  Google Scholar 

  55. Perreault, F., Samadani, M., & Dewez, D. (2014). Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology,8, 374–382.

    CAS  Google Scholar 

  56. Philippe, A., & Schaumann, G. E. (2014). Interactions of dissolved organic matter with natural and engineered inorganic colloids: A review. Environmental Science and Technology,48, 8946–8962.

    CAS  Google Scholar 

  57. Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research,14(9), 1109.

    Google Scholar 

  58. Priester, J. H., Moritz, S. C., Espinosa, K., Ge, Y., Wang, Y., Nisbet, R. M., et al. (2017). Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Science of the Total Environment,579, 1756–1768.

    CAS  Google Scholar 

  59. Qiu, H., & Smolders, E. (2017). Nanospecific phytotoxicity of CuO nanoparticles in soils disappeared when bioavailability factors were considered. Environmental Science and Technology,51, 11976–11985.

    CAS  Google Scholar 

  60. Rai, M., Ingle, A., Pandit, R., Paralikar, P., Shende, S., Gupta, I., et al. (2018). Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews,7, 303–315.

    CAS  Google Scholar 

  61. Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., et al. (2018a). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring & Management,9, 76–84.

    Google Scholar 

  62. Rajput, V. D., Minkina, T., Fedorenko, A., Mandzhieva, S., Sushkova, S., Lysenko, V., et al. (2018b). Destructive effect of copper oxide nanoparticles on ultrastructure of chloroplast, plastoglobules and starch grains in spring barley (Hordeum sativum distichum). International Journal of Agriculture and Biology,21, 171–174.

    Google Scholar 

  63. Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., et al. (2018d). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science of the Total Environment,645, 1103–1113.

    CAS  Google Scholar 

  64. Rajput, V. D., Minkina, T., Fedorenko, A., Tsitsuashvili, V., Mandzhieva, S., Sushkova, S., & Azarov, A. (2018b). Metal oxide nanoparticles: Applications and effects on soil ecosystems. In “Soil Contamination: Sources, Assessment and Remediation”, Nova Science Publisher, pp. 81–106.

  65. Rajput, V. D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., et al. (2017a). Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments,18, 2179–2187.

    Google Scholar 

  66. Rajput, V. D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V., et al. (2017b). Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience,8, 36–42.

    Google Scholar 

  67. Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry,66(26), 6487–6503.

    Google Scholar 

  68. Rawat, S., Pullagurala, V. L. R., Hernandez-Molina, M., Sun, Y., Niu, G., Hernandez-Viezcas, J. A., et al. (2018). Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environmental Science: Nano,5, 83–95.

    CAS  Google Scholar 

  69. Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry,59, 3485–3498.

    CAS  Google Scholar 

  70. Rui, M., Ma, C., White, J. C., Hao, Y., Wang, Y., Tang, X., et al. (2018). Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano,5, 2088–2102.

    CAS  Google Scholar 

  71. Servin, A. D., Pagano, L., Castillo-Michel, H., De la Torre-Roche, R., Hawthorne, J., Hernandez-Viezcas, J. A., et al. (2017). Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology,11, 98–111.

    CAS  Google Scholar 

  72. Shah, V., Luxton, T. P., Walker, V. K., Brumfield, T., Yost, J., Shah, S., et al. (2016). Fate and impact of zero-valent copper nanoparticles on geographically-distinct soils. Science of the Total Environment,573, 661–670.

    CAS  Google Scholar 

  73. Shaw, A. K., & Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere,93, 906–915.

    CAS  Google Scholar 

  74. Simonin, M., & Richaume, A. (2015). Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review. Environmental Science and Pollution Research,22, 13710–13723.

    CAS  Google Scholar 

  75. Singh, D., & Kumar, A. (2016). Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bulletin of Environmental Contamination and Toxicology,97, 548–553.

    CAS  Google Scholar 

  76. Singh, D., & Kumar, A. (2018). Investigating long-term effect of nanoparticles on growth of Raphanus sativus plants: a trans-generational study. Ecotoxicology,27, 23–31.

    CAS  Google Scholar 

  77. Soni, D., Naoghare, P. K., Saravanadevi, S., & Pandey, R. A. (2015). Release, Transport and Toxicity of Engineered Nanoparticles. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 1–47). Cham: Springer International Publishing.

    Google Scholar 

  78. Strambeanu, N., Demetrovici, L., & Dragos, D. (2015). Natural Sources of Nanoparticles, In book: M. Lungu et al. (eds.), Nanoparticles’ Promises and Risks, Springer International Publishing Switzerland, pp. 9–19.

  79. Sturikova, H., Krystofova, O., Huska, D., & Adam, V. (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials,349, 101–110.

    CAS  Google Scholar 

  80. Sun, T. Y., Bornhoft, N. A., Hungerbuhler, K., & Nowack, B. (2016). Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environmental Science and Technology,50, 4701–4711.

    CAS  Google Scholar 

  81. Tiede, K., Boxall, A. B., Tear, S. P., Lewis, J., David, H., & Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment,25, 795–821.

    CAS  Google Scholar 

  82. Tiede, K., Hanssen, S. F., Westerhoff, P., Fern, G. J., Hankin, S. M., Aitken, R. J., et al. (2016). How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology,10, 102–110.

    CAS  Google Scholar 

  83. Tolaymat, T., El Badawy, A., Genaidy, A., Abdelraheem, W., & Sequeira, R. (2017). Analysis of metallic and metal oxide nanomaterial environmental emissions. Journal of Cleaner Production,143, 401–412.

    CAS  Google Scholar 

  84. Ude, V. C., Brown, D. M., Viale, L., Kanase, N., Stone, V., & Johnston, H. J. (2017). Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration. Particle and Fibre Toxicology,14, 31.

    Google Scholar 

  85. Umar, H., Kavaz, D., & Rizaner, N. (2019). Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. International Journal of Nanomedicine,14, 87–100.

    CAS  Google Scholar 

  86. Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Jr., Rejeski, D., et al. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology,6, 1769–1780.

    CAS  Google Scholar 

  87. Wang, S., Li, Z., Gao, M., She, Z., Ma, B., Guo, L., et al. (2017a). Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. Journal of Environmental Economics and Management,187, 330–339.

    CAS  Google Scholar 

  88. Wang, X., Ma, R., Cui, D., Cao, Q., Shan, Z., & Jiao, Z. (2017b). Physio-biochemical and molecular mechanism underlying the enhanced heavy metal tolerance in highland barley seedlings pre-treated with low-dose gamma irradiation. Scientific Reports,7, 14233.

    Google Scholar 

  89. Wang, Z., von dem Bussche, A., Kabadi, P. K., Kane, A. B., & Hurt, R. H. (2013). Biological and environmental transformations of copper-based nanomaterials. ACS Nano,7, 8715–8727.

    CAS  Google Scholar 

  90. Wang, X., Yang, X., Chen, S., Li, Q., Wang, W., Hou, C., et al. (2015). Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers in Plant Science,6, 1243.

    Google Scholar 

  91. Wang, M., Yang, Q., Long, J., Ding, Y., Zou, X., Liao, G., et al. (2018). A comparative study of toxicity of TiO(2), ZnO, and Ag nanoparticles to human aortic smooth-muscle cells. International Journal of Nanomedicine,13, 8037–8049.

    CAS  Google Scholar 

  92. Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. Journal of Petroleum & Environmental Biotechnology,3, 126.

    CAS  Google Scholar 

  93. Xu, L. (2018). Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root. IOP Conference Series: Earth and Environmental Science,113, 012230.

    Google Scholar 

  94. Xu, C., Peng, C., Sun, L., Zhang, S., Huang, H., Chen, Y., et al. (2015). Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology & Biochemistry,86, 24–33.

    CAS  Google Scholar 

  95. Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). International Journal of Environmental Research and Public Health,12, 15100–15109.

    CAS  Google Scholar 

  96. You, T., Liu, D., Chen, J., Yang, Z., Dou, R., Gao, X., et al. (2017). Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. Journal of Soils and Sediments,18, 211–221.

    Google Scholar 

  97. Zhang, Z., Ke, M., Qu, Q., Peijnenburg, W., Lu, T., Zhang, Q., et al. (2018a). Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution,239, 689–697.

    CAS  Google Scholar 

  98. Zhang, J., Wang, B., Wang, H., He, H., Wu, Q., Qin, X., et al. (2018b). Disruption of the superoxide anions-mitophagy regulation axis mediates copper oxide nanoparticles-induced vascular endothelial cell death. Free Radical Biology and Medicine,129, 268–278.

    CAS  Google Scholar 

  99. Zhang, J., Zou, Z., Wang, B., Xu, G., Wu, Q., Zhang, Y., et al. (2018c). Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials,161, 228–239.

    CAS  Google Scholar 

  100. Zhao, L., Hu, J., Huang, Y., Wang, H., Adeleye, A., Ortiz, C., et al. (2017). (1)H NMR and GC-MS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiology and Biochemistry,110, 138–146.

    CAS  Google Scholar 

  101. Zuverza-Mena, N., Medina-Velo, I. A., Barrios, A. C., Tan, W., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2015). Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environmental Science: Processes & Impacts,17, 1783–1793.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education and Science of Russia, Project No. 5.948.2017/PCh and joint projects: RFBR No. 18-55-05023 and SCS No. 18RF-077.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vishnu Rajput.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajput, V., Minkina, T., Sushkova, S. et al. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environ Geochem Health 42, 147–158 (2020). https://doi.org/10.1007/s10653-019-00317-3

Download citation

Keywords

  • Copper
  • Food chain
  • Human health
  • Nanoparticles
  • Toxicity
  • Zinc