Skip to main content

Environmental geochemistry and cancer: a pertinent global health problem requiring interdisciplinary collaboration

Abstract

Primary prevention is a key strategy to reducing the global burden of cancer, a disease responsible for ~ 9.6 million deaths per year and predicted to top 13 million by 2030. The role of environmental geochemistry in the aetiology of many cancers—as well as other non-communicable diseases—should not be understated, particularly in low- and middle-income countries where 70% of global cancer deaths occur and reliance on local geochemistry for drinking water and subsistence crops is still widespread. This article is an expansion of a series of presentations and discussions held at the 34th International Conference of the Society for Environmental Geochemistry and Health in Livingstone, Zambia, on the value of effective collaborations between environmental geochemists and cancer epidemiologists. Key technical aspects of each field are presented, in addition to a case study of the extraordinarily high incidence rates of oesophageal cancer in the East African Rift Valley, which may have a geochemical contribution. The potential merit of veterinary studies for investigating common geochemical risk factors between human and animal disease is also highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aderibigbe, A. D., Stewart, A. G., & Hursthouse, A. S. (2018). Seeking evidence of multidisciplinarity in environmental geochemistry and health: An analysis of arsenic in drinking water research. Environmental Geochemistry and Health,40, 395–413.

    CAS  Google Scholar 

  2. Al-Rmalli, S. W., Jenkins, R. O., Watts, M. J., & Haris, P. I. (2010). Risk of human exposure to arsenic and other toxic elements from geophagy: Trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environmental Health,9, 79.

    CAS  Google Scholar 

  3. Ames, B. N., & Wakimoto, P. (2002). Are vitamin and mineral deficiencies a major cancer risk? Nature Reviews Cancer,2, 694–704.

    CAS  Google Scholar 

  4. Armstrong, R. W. (1972). Is there a particular kind of soil or geologic environment that predisposes to cancer? Annals of the New York Academy of Sciences,199, 239–248.

    CAS  Google Scholar 

  5. Arnold, M., Soerjomataram, I., Ferlay, J., & Forman, D. (2015). Global incidence of oesophageal cancer by histological subtype in 2012. Gut,64, 387.

    Google Scholar 

  6. Arthur, J. R., McKenzie, R. C., & Beckett, G. J. (2003). Selenium in the immune system. The Journal of nutrition,133, 1457S–1459S.

    CAS  Google Scholar 

  7. Ayaya, S. O., & Esamai, F. O. (2001). Health problems of street children in Eldoret, Kenya. East African medical journal,78, 624–630.

    CAS  Google Scholar 

  8. Bertone, E. R., Snyder, L. A., & Moore, A. S. (2002). Environmental tobacco smoke and risk of malignant lymphoma in pet cats. American Journal of Epidemiology,156, 268–273.

    Google Scholar 

  9. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians,68(6), 394–424.

    Google Scholar 

  10. Davey, G., Tekola, F., & Newport, M. J. (2007). Podoconiosis: Non-infectious geochemical elephantiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene,101, 1175–1180.

    Google Scholar 

  11. Davies, T. C. (2008). Environmental health impacts of East African Rift volcanism. Environmental Geochemistry and Health,30, 325–338.

    CAS  Google Scholar 

  12. Espina, C., Herrero, R., Sankaranarayanan, R., Krug, E., Wild, C. P., & Schüz, J. (2018). Toward the World code against cancer. Journal of Global Oncology,4, 1–8.

    Google Scholar 

  13. Espina, C., Porta, M., Schüz, J., Aguado, I. H., Percival, R. V., Dora, C., et al. (2013). Environmental and occupational interventions for primary prevention of cancer: A cross-sectorial policy framework. Environmental Health Perspectives,121, 420–426.

    Google Scholar 

  14. Francesconi, K. A., & Kuehnelt, D. (2004). Determination of arsenic species: A critical review of methods and applications, 2000–2003. Analyst,129, 373–395.

    CAS  Google Scholar 

  15. Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. (2004). A census of human cancer genes. Nature Reviews Cancer,4, 177.

    CAS  Google Scholar 

  16. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell,100, 57–70.

    CAS  Google Scholar 

  17. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell,144, 646–674.

    CAS  Google Scholar 

  18. Hayes, H. M., Tarone, R. E., Casey, H. W., & Huxsoll, D. L. (1990). Excess of seminomas observed in Vietnam service US military working dogs. JNCI: Journal of the National Cancer Institute,82, 1042–1046.

    CAS  Google Scholar 

  19. Ho, E. (2004). Zinc deficiency, DNA damage and cancer risk. The Journal of nutritional biochemistry,15, 572–578.

    CAS  Google Scholar 

  20. Hurst, R., Siyame, E. W., Young, S. D., Chilimba, A. D., Joy, E. J., Black, C. R., et al. (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports,3, 1425.

    Google Scholar 

  21. IARC (2006). Preamble to the IARC Monographs, International Agency for Research on Cancer. available: https://monographs.iarc.fr/wp-content/uploads/2018/06/CurrentPreamble.pdf. Accessed 19/07/2018.

  22. Joy, E. J. M., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D. C., et al. (2014). Dietary mineral supplies in Africa. Physiologia Plantarum,151, 208–229.

    CAS  Google Scholar 

  23. Joy, E. J. M., Broadley, M. R., Young, S. D., Black, C. R., Chilimba, A. D. C., Ander, E. L., et al. (2015). Soil type influences crop mineral composition in Malawi. Science of the Total Environment,505, 587–595.

    CAS  Google Scholar 

  24. Kamangar, F., Chow, W. H., Abnet, C. C., & Dawsey, S. M. (2009). Environmental causes of esophageal cancer. Gastroenterology Clinics of North America,38, 27–57.

    Google Scholar 

  25. Kelsey, J. L., Moore, A. S., & Glickman, T. (1998). Epidemiologic studies of risk factors for cancer in pet dogs. Epidemiologic Reviews,20, 204–217.

    CAS  Google Scholar 

  26. Lark, R. M., Ander, E. L., Cave, M. R., Knights, K. V., Glennon, M. M., & Scanlon, R. P. (2014). Mapping trace element deficiency by cokriging from regional geochemical soil data: A case study on cobalt for grazing sheep in Ireland. Geoderma,226, 64–78.

    Google Scholar 

  27. Mao, L., Bailey, E. H., Chester, J., Joseph Dean, E., Ander, L., Chenery, S. R., et al. (2014). Lability of Pb in soil: Effects of soil properties and contaminant source. Environmental Chemistry,11, 690–701.

    CAS  Google Scholar 

  28. McCormack, V. A., Menya, D., Munishi, M. O., Dzamalala, C., Gasmelseed, N., Leon Roux, M., et al. (2016). Informing etiologic research priorities for squamous cell esophageal cancer in Africa: A review of setting-specific exposures to known and putative risk factors. International journal of cancer,140(2), 259–271.

    Google Scholar 

  29. McCormack, V. A., & Schüz, J. (2012). Africa’s growing cancer burden: Environmental and occupational contributions. Cancer Epidemiology,36, 1–7.

    Google Scholar 

  30. McGlashan, N. D. (1969). Oesophageal cancer and alcoholic spirits in central Africa. Gut,10, 643–650.

    CAS  Google Scholar 

  31. McKinley, J. M., Ofterdinger, U., Young, Ml, Barsby, A., & Gavin, A. (2013). Investigating local relationships between trace elements in soils and cancer data. Spatial statistics,5, 25–41.

    Google Scholar 

  32. Middleton, D. R. S., Watts, M. J., Beriro, D. J., Hamilton, E. M., Leonardi, G. S., Fletcher, T., et al. (2017). Arsenic in residential soil and household dust in Cornwall, South West England: Potential human exposure and the influence of historical mining. Environmental Science: Processes & impacts,19, 517–527.

    CAS  Google Scholar 

  33. Middleton, D. R. S., Watts, M. J., Hamilton, E. M., Ander, E. L., Close, R. M., Exley, K. S., et al. (2016). Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Scientific reports,6, 25656.

    CAS  Google Scholar 

  34. Ockerse, T. (1953). Chronic endemic dental fluorosis in Kenya, East Africa. Brit. Dent. J.,95, 57–60.

    Google Scholar 

  35. Olsson, A. C., Yiwen, X., Schüz, J., Vlaanderen, J., Kromhout, H., Vermeulen, R., et al. (2013). Lung cancer risk among hairdressers: A pooled analysis of case-control studies conducted between 1985 and 2010. American Journal of Epidemiology,178, 1355–1365.

    Google Scholar 

  36. Parkin, D. M., & Khlat, M. (1996). Studies of cancer in migrants: Rationale and methodology. European Journal of Cancer,32, 761–771.

    Google Scholar 

  37. Plowright, W., Linsell, C. A., & Peers, F. G. (1971). Focus of Rumenal Cancer in Kenyan Cattle. British Journal of Cancer,25, 72.

    CAS  Google Scholar 

  38. Polya, D. A., & Middleton, D. R. S. (2017). Arsenic in drinking water: Sources & human exposure routes. In P. Bhattacharya, D. A. Polya, & D. Jovanovic (Eds.), Best practice guide on the control of arsenic in drinking water. Lyon: IWA Publishing.

    Google Scholar 

  39. Qiao, Y. L., Dawsey, S. M., Kamangar, F., Fan, J. H., Abnet, C. C., Sun, X. D., et al. (2009). Total and cancer mortality after supplementation with vitamins and minerals: Follow-up of the Linxian General Population Nutrition Intervention Trial. Journal of the National Cancer Institute,101, 507–518.

    CAS  Google Scholar 

  40. Rink, Lothar. (2000). Zinc and the immune system. Proceedings of the Nutrition Society,59, 541–552.

    CAS  Google Scholar 

  41. Rubio, C. A., & Liu, Fu-Sheng. (1989). Spontaneous squamous carcinoma of the esophagus in chickens. Cancer,64, 2511–2514.

    CAS  Google Scholar 

  42. Schaafsma, T., Wakefield, J., Hanisch, R., Bray, F., Schuz, J., Joy, E. J., et al. (2015). Africa’s Oesophageal Cancer Corridor: Geographic variations in incidence correlate with certain micronutrient deficiencies. One: PLoS.

    Google Scholar 

  43. Schneider, R., Dorn, C. R., & Taylor, D. O. N. (1969). Factors influencing canine mammary cancer development and postsurgical survival. Journal of the National Cancer Institute,43, 1249–1261.

    CAS  Google Scholar 

  44. Schonfeld, S. J., Winde, F., Albrecht, C., Kielkowski, D., Liefferink, M., Patel, M., et al. (2014). Health effects in populations living around the uraniferous gold mine tailings in South Africa: Gaps and opportunities for research. Cancer Epidemiology,38, 628.

    CAS  Google Scholar 

  45. Schüz, J., Espina, C., Villain, P., Herrero, R., Leon, M. E., Minozzi, S., et al. (2015). European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk. Cancer Epidemiology,39, S1–S10.

    Google Scholar 

  46. Smith, M. T., Guyton, K. Z., Gibbons, C. F., Fritz, J. M., Portier, C. J., Rusyn, I., et al. (2016). Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environmental Health Perspectives,124, 713.

    CAS  Google Scholar 

  47. Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., et al. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives,97, 259.

    CAS  Google Scholar 

  48. Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization,78, 1093–1103.

    CAS  Google Scholar 

  49. Steevens, J., van den Brandt, P. A., Goldbohm, R. A., & Schouten, L. J. (2010). Selenium status and the risk of esophageal and gastric cancer subtypes: The Netherlands cohort study. Gastroenterology,138, 1704–1713.

    CAS  Google Scholar 

  50. Stewart, B. W., & Wild, C. P. (2014). World Cancer Report 2014. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  51. Sylla, B. S., & Wild, C. P. (2012). A million africans a year dying from cancer by 2030: What can cancer research and control offer to the continent? International Journal of Cancer,130, 245–250.

    CAS  Google Scholar 

  52. Tapiero, H., Townsend, D. M., & Tew, K. D. (2003). The antioxidant role of selenium and seleno-compounds. Biomedicine & Pharmacotherapy,57, 134–144.

    CAS  Google Scholar 

  53. Thornton, I. (1993). Environmental geochemistry and health in the 1990s: A global perspective. Applied Geochemistry,8, 203–210.

    Google Scholar 

  54. Thornton, I. (2002). Geochemistry and the mineral nutrition of agricultural livestock and wildlife. Applied Geochemistry,17, 1017–1028.

    CAS  Google Scholar 

  55. Thornton, I., & Webb, J. S. (1979). Geochemistry and health in the United Kingdom. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,288, 151–168.

    CAS  Google Scholar 

  56. Tomasetti, C., & Vogelstein, B. (2015). Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science,347, 78–81.

    CAS  Google Scholar 

  57. Vineis, P., & Wild, C. P. (2014). Global cancer patterns: Causes and prevention. The Lancet,383, 549–557.

    Google Scholar 

  58. Vint, F. W. (1935). Malignant Disease in the Natives of Kenya. Lancet,226, 628–630.

    Google Scholar 

  59. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., Jr., & Kinzler, K. W. (2013). Cancer genome landscapes. Science,339, 1546–1558.

    CAS  Google Scholar 

  60. Watts, M. J., Joy, E. J. M., Young, S. D., Broadley, M. R., Chilimba, A. D. C., Gibson, R. S., et al. (2015). Iodine source apportionment in the Malawian diet. Scientific reports,5, 15251.

    CAS  Google Scholar 

  61. WHO. (2013). International classification of diseases for oncology (ICD-O)–3rd edition, 1st revision. Geneva: World Health Organization.

    Google Scholar 

  62. WHO (2018). Fact sheets on cancer, updated 1 February 2018, available: http://www.who.int/en/news-room/fact-sheets/detail/cancer. Accessed 19/07/2018.

  63. WHO/UNICEF. (2017). ‘Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Geneva: World Health Organization.

    Google Scholar 

  64. Wild, C., Brennan, P., Plummer, M., Bray, F., Straif, K., & Zavadil, J. (2015). Cancer risk: Role of chance overstated. Science,347, 728.

    CAS  Google Scholar 

  65. World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF) (2017). Licence: CC BY-NC-SA 3.0 IGO.

  66. Woywodt, A., & Kiss, A. (2002). Geophagia: The history of earth-eating. Journal of the Royal Society of Medicine,95, 143–146.

    Google Scholar 

  67. Wu, S., Powers, S., Zhu, W., & Hannun, Y. A. (2016). Substantial contribution of extrinsic risk factors to cancer development. Nature,529, 43.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the organisers and delegates of the 34th SEGH International Conference, where this article was conceived and to the Environment, Sustainability and Environment Division of the Royal Society of Chemistry (RSC), which awarded funds to partially cover D. Middleton’s conference attendance. The work was undertaken during an IARC postdoctoral fellowship (D. Middleton) partially supported by the European Commission FP7 Marie Curie Actions —People—Co-funding of regional, national and international programs (COFUND).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel R. S. Middleton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Middleton, D.R.S., McCormack, V.A., Watts, M.J. et al. Environmental geochemistry and cancer: a pertinent global health problem requiring interdisciplinary collaboration. Environ Geochem Health 42, 1047–1056 (2020). https://doi.org/10.1007/s10653-019-00303-9

Download citation

Keywords

  • Environmental geochemistry
  • Cancer epidemiology
  • Oesophageal cancer