Review of the nature of some geophagic materials and their potential health effects on pregnant women: some examples from Africa

  • Selma N. Kambunga
  • Carla Candeias
  • Israel Hasheela
  • Hassina MouriEmail author
Review Paper


The voluntary human consumption of soil known as geophagy is a global practice and deep-rooted in many African cultures. The nature of geophagic material varies widely from the types to the composition. Generally, clay and termite mound soils are the main materials consumed by geophagists. Several studies revealed that gestating women across the world consume more soil than other groups for numerous motives. These motivations are related to medicinal, cultural and nutrients supplementation. Although geophagy in pregnancy (GiP) is a universal dynamic habit, the highest prevalence has been reported in African countries such as Kenya, Ghana, Rwanda, Nigeria, Tanzania, and South Africa. Geophagy can be both beneficial and detrimental. Its health effects depend on the amount and composition of the ingested soils, which is subjective to the geology and soil formation processes. In most cases, the negative health effects concomitant with the practice of geophagy eclipse the positive effects. Therefore, knowledge about the nature of geophagic material and the health effects that might arise from their consumption is important.


Geophagy Soil material consumed Pregnant women Health implications Africa 



The authors are grateful to the University of Johannesburg and the National Research Foundation (NRF, South Africa) Incentive Funding for Rated Researchers (Grant No 91059) and Collaborative Postgraduate training programme (Grant No. 105295) for the financial support. Carla Candeias is thankful to the Portuguese Institutions University of Aveiro, IU GeoBioTec and to FCT (UID/GEO/04035/2013 and SFRH/BPD/99636/2014) for financial support of her work. Dr Langenhoven, Delicia, Department of English, University of Johannesburg, South Africa, is thanked for the language correction of the early version of the manuscript. Anonymous reviewers and the editor of the journal are acknowledged for their valuable comments, which helped to improve the manuscript.


  1. Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(2), 164.Google Scholar
  2. Abe, O. E. (2016). Effects of Termites on Clay Minerals in Lateritic Soils Used For Road Construction in Ado-Ekiti, South Western Nigeria. American Journal of Engineering Research, 5(9), 175–180.Google Scholar
  3. Abe, S. S., Kotegawa, T., Onishi, T., Watanabe, Y., & Wakatsuki, T. (2012). Soil particle accumulation in termite (Macrotermes bellicosus) mounds and the implications for soil particle dynamics in a tropical savanna Ultisol. Ecological Research, 27(1), 219–227.CrossRefGoogle Scholar
  4. Abe, S. S., Yamamoto, S., & Wakatsuki, T. (2009). Soil-particle selection by the mound-building termite Macrotermes bellicosus on a sandy loam soil catena in a Nigerian tropical savanna. Journal of Tropical Ecology, 25(4), 449–452.CrossRefGoogle Scholar
  5. Abernathy, C., & Morgan, A. (2001). Exposure and health effects. United States Environmental Protection Agency, 1–100.Google Scholar
  6. Abrahams, P. W. (1997). Geophagy (soil consumption) and iron supplementation in Uganda. Tropical Medicine & International Health, 2(7), 617–623.CrossRefGoogle Scholar
  7. Abrahams, P. W. (2005). Geophagy and the involuntary ingestion of soil. In O. Selinus, B. Alloway, J. A. Centeno, et al. (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 435–458). Amsterdam: Elsevier.Google Scholar
  8. Abrahams, P. W. (2013). Geophagy and the involuntary ingestion of soil. In O. Selinus, (Ed.), Essentials of medical geology (pp. 433–454). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Abrahams, P. W., Follansbee, M. H., Hunt, A., Smith, B., & Wragg, J. (2006). Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Applied Geochemistry, 21(1), 98–108.CrossRefGoogle Scholar
  10. Abrahams, P. W., & Parsons, J. A. (1996). Geophagy in the tropics: A literature review. Geographical Journal, 162, 63–72.CrossRefGoogle Scholar
  11. Ackerman, I. L., Teixeira, W. G., Riha, S. J., Lehmann, J., & Fernandes, E. C. (2007). The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37(3), 267–276.CrossRefGoogle Scholar
  12. Adam, I., Khamis, A. H., & Elbashir, M. I. (2005). Prevalence and risk factors for anaemia in pregnant women of eastern Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99(10), 739–743.CrossRefGoogle Scholar
  13. Adekayode, F. O., & Ogunkoya, M. O. (2009). Comparative study of clay and organic matter content of termite mounds and the surrounding soils. African Crop Science Conference Proceedings, 9, 379–384.Google Scholar
  14. Agene, I. J., Lar, U. A., Mohammed, S. O., Gajere, E. N., Dang, B., Jeb, D. N., et al. (2014). The effects of geophagy on pregnant women in Nigeria. American Journal of Human Ecology, 3(1), 1–9.CrossRefGoogle Scholar
  15. Ali, A. A. A., & Adam, I. (2010). Anaemia and stillbirth in Kassala hospital, eastern Sudan. Journal of Tropical Pediatrics, 57(1), 62–64.CrossRefGoogle Scholar
  16. Allen, L., & Casterline-Sabel, J. (2001). Prevalence and causes of nutritional anemias. In U. Ramakrishnan (Ed.), Nutritional anemias (pp. 7–22). Boca Raton: CRC Press.Google Scholar
  17. Alloway, B. J. ed. (1990). Soil processes and the behavior of metals. In Heavy metals in soils (pp. 7–28). UK: Blackie & Son Ltd.Google Scholar
  18. Altamirano-Lozano, M. A., Alvarez-Barrera, L., Mateos-Nava, R. A., Fortoul, T. I., & Rodriguez-Mercado, J. J. (2014). Potential for genotoxic and reprotoxic effects of vanadium compounds due to occupational and environmental exposures: An article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15–18, 2012. Journal of Immunotoxicology, 11(1), 19–27.CrossRefGoogle Scholar
  19. Anderson, R. A., Polansky, M. M., Bryden, N. A., Patterson, K. Y., Veillon, C., & Glinsmann, W. H. (1983). Effects of chromium supplementation on urinary Cr excretion of human subjects and correlation of Cr excretion with selected clinical parameters. The Journal of Nutrition, 113(2), 276–281.CrossRefGoogle Scholar
  20. Aras, N. K., & Ataman, O. Y. (2006). Essentiality and toxicity of some trace elements and their determination. In Trace element analysis of food and diet (pp. 233–335). Cambridge, UK: RSC Publishing.Google Scholar
  21. Arhin, E., & Zango, M. S. (2017). Determination of trace elements and their concentrations in clay balls: Problem of geophagia practice in Ghana. Environmental Geochemistry and Health, 39(1), 1–14.CrossRefGoogle Scholar
  22. Aschner, M., Erikson, K. M., & Dorman, D. C. (2005). Manganese dosimetry: Species differences and implications for neurotoxicity. Critical Reviews in Toxicology, 35(1), 1–32.CrossRefGoogle Scholar
  23. Aschner, M., Guilarte, T. R., Schneider, J. S., & Zheng, W. (2007). Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicology and Applied Pharmacology, 221(2), 131–147.CrossRefGoogle Scholar
  24. ATSDR, Agency for Toxic Substance and Disease Registry. (2003). Toxicological profile for mercury. U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta. Last accessed January 2019.
  25. ATSDR, Agency for Toxic Substances and Disease Registry. (1990). Toxicological profile for copper. U.S Public Health Service. Agency for Toxic Substances and Disease Registry, Atlanta, G.A. Last accessed January 2019.
  26. ATSDR, Agency for Toxic Substances and Disease Registry. (1992). Toxicological profile for vanadium. Prepared by element Associates, Inc., Agency for toxic substances and disease registry, US public health service, Atlanta, GA. Available at Last accessed January 2019.
  27. ATSDR, Agency for Toxic Substances and Disease Registry. (1998). Toxicological profile for chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. Last accessed January 2019.
  28. ATSDR, Agency for Toxic Substances and Disease Registry. (2000). Toxicological profile for zinc. US Department of Health and Human Services. Public Health Service. http://www.atsdr.cdc.govytoxprofilesytp60.html. Last accessed January 2019.
  29. ATSDR, Agency for Toxic Substances and Disease Registry. (2012a). Toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Services. Last accessed January 2019.
  30. ATSDR, Agency for Toxic Substances and Disease Registry. (2012b). Toxicological profile for chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Services. Last accessed January 2019.
  31. Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in health and disease. In A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Interrelations between essential metal ions and human diseases (pp. 199–227). Dordretch: Springer.CrossRefGoogle Scholar
  32. Bailey, J. L., Sands, J. M., & Franch, H. A. (2014). Water, electrolytes, and acid-base metabolism. In A. C. Ross, B. Caballero, R. J. Cousins, K. L. Tucker, & T. R. Ziegler (Eds.), Modern nutrition in health and disease (11th ed., pp. 102–132). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  33. Barabasz, W., Albinska, D., Jaskowska, M., & Lipiec, J. (2002). Ecotoxicology of aluminium. Polish Journal of Environmental Studies, 11(3), 199–204.Google Scholar
  34. Barceloux, D. G., & Barceloux, D. (1999). Vanadium. Journal of Toxicology, Clinical Toxicology, 37(2), 265–278.CrossRefGoogle Scholar
  35. Barton, C. D. (2002). Clay Minerals. In Rattan Lal, comp. (Ed.), Encyclopedia of Soil Science (pp. 187–192). New York: Marcel Dekker.Google Scholar
  36. Bengt, A., & Lagercrantz, S. (1958). Geophagical customs. Studia Ethnographica Upsaliensia, 17.Google Scholar
  37. Bhaskarachary, K. (2011). Potassium and human nutrition: The Soil plant-human continuum. Karnataka Journal of Agricultural Sciences, 24(1), 39–44.Google Scholar
  38. Birchall, J. D., Bellia, J. P., & Roberts, N. B. (1996). On the mechanisms underlying the essentiality of silicon—Interactions with aluminium and copper. Coordination Chemistry Reviews, 149, 231–240.Google Scholar
  39. Black, R. E. (2003). Zinc deficiency, infectious disease and mortality in the developing world. The Journal of Nutrition, 133(5), 1485S–1489S.CrossRefGoogle Scholar
  40. Bose-O’Reilly, S., McCarty, K. M., Steckling, N., & Lettmeier, B. (2010). Mercury exposure and children’s health. Current Problems in Pediatric and Adolescent Health Care, 40(8), 186–215.CrossRefGoogle Scholar
  41. Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J. F., & Margaritis, I. (2016). Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology, 35, 107–115.CrossRefGoogle Scholar
  42. Boudissa, S. M., Lambert, J., Müller, C., Kennedy, G., Gareau, L., & Zayed, J. (2006). Manganese concentrations in the soil and air in the vicinity of a closed manganese alloy production plant. Science of the Total Environment, 361(1–3), 67–72.CrossRefGoogle Scholar
  43. Boyer, P. (1971). Les differents aspects de l’action des termites sur les sols tropicauz. In P. Pesson (Ed.), La Vie dans les Sols-Aspects Nouveauz. Etudes Experimentales, pp. 279–34.Google Scholar
  44. Brady, N. C., & Weil, R. R. (1999). Practical nutrient management. In The nature and Properties of Soils, 12th edn. Prentice Hall, New Jersey, pp. 612–666.Google Scholar
  45. Brown, L. S. (2000). Nutrition Requirements during Pregnancy. Jones and Bartlett Publishers, (pp. 1-24). Retrieved from: Last accessed January 2019.
  46. Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P. A. (2011). Soil genesis and classification (6th ed., pp. 1–543). New York: Wiley.CrossRefGoogle Scholar
  47. Callahan, G. N. (2003). Eating dirt. Emerging Infectious Diseases, 9(8), 1016.CrossRefGoogle Scholar
  48. Candeias, C., da Silva, E. F., Ávila, P. F., & Teixeira, J. P. (2014). Identifying sources and assessing potential risk of exposure to heavy metals and hazardous materials in mining areas: The case study of Panasqueira mine (Central Portugal) as an example. Geosciences, 4(4), 240–268.CrossRefGoogle Scholar
  49. Carignan, C. C., Cottingham, K. L., Jackson, B. P., Farzan, S. F., Gandolfi, A. J., Punshon, T., et al. (2015). Estimated exposure to arsenic in breastfed and formula-fed infants in a United States cohort. Environmental Health Perspectives, 123(5), 500.CrossRefGoogle Scholar
  50. Castiglioni, S., Cazzaniga, A., Albisetti, W., & Maier, J. (2013). Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients, 5(8), 3022–3033.CrossRefGoogle Scholar
  51. Chandrajith, R., Kudavidanage, E., Tobschall, H. J., & Dissanayake, C. B. (2009). Geochemical and mineralogical characteristics of elephant geophagic soils in Udawalawe National Park, Sri Lanka. Environmental Geochemistry and Health, 31(3), 8391–8400.CrossRefGoogle Scholar
  52. Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: An update. Archives of Toxicology, 86(4), 521–534.CrossRefGoogle Scholar
  53. Chen, N. S., Tsai, A., & Dyer, I. A. (1973). Effect of chelating agents on chromium absorption in rats. The Journal of Nutrition, 103(8), 1182–1186.CrossRefGoogle Scholar
  54. Chivers, P. T. (2015). Nickel recognition by bacterial importer proteins. Metallomics, 7(4), 590–595.CrossRefGoogle Scholar
  55. Choi, Y. K., Kim, J. M., Lee, J. E., Cho, M. S., Kang, B. S., Choi, H., et al. (2016). Association of maternal diet with zinc, copper, and iron concentrations in transitional human milk produced by Korean mothers. Clinical Nutrition Research, 5(1), 15–25.CrossRefGoogle Scholar
  56. Civantos, D. P., Rodriguez, A. L., Aguado-Borruey, J. M., & Narvaez, J. A. J. (1995). Fulminant malignant arrythmia and multiorgan failure in acute arsenic poisoning. Chest, 108(6), 1774–1775.CrossRefGoogle Scholar
  57. Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662.CrossRefGoogle Scholar
  58. Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury—Current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731–1737.CrossRefGoogle Scholar
  59. Cordano, A. (1998). Clinical manifestations of nutritional copper deficiency in infants and children. The American Journal of Clinical Nutrition, 67(5), 1012S–1016S.CrossRefGoogle Scholar
  60. Cotrufo, M. F., Soong, J. L., Horton, A. J., Campbell, E. E., Haddix, M. L., Wall, D. H., et al. (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8(10), ngeo2520.CrossRefGoogle Scholar
  61. Crans, D. C., Amin, S. S., & Keramidas, A. D. (1998). Chemistry of relevance to vanadium in the environment. Advances in Environmental Science and Technology, 30, 73–96.Google Scholar
  62. Crawford, L., & Bodkin, K. (2011). Health and social impacts of geophagy in panama. McGill Science Undergraduate Research Journal, 6(1), 31–37.Google Scholar
  63. Crook, M. A., Hally, V., & Panteli, J. V. (2001). The importance of the refeeding syndrome1. Nutrition, 17(7–8), 632–637.CrossRefGoogle Scholar
  64. Dashnyam, K., El-Fiqi, A., Buitrago, J. O., Perez, R. A., Knowles, J. C., & Kim, H. W. (2017). A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. Journal of Tissue Engineering, 8, 2041731417707339.CrossRefGoogle Scholar
  65. De Baaij, J. H., Hoenderop, J. G., & Bindels, R. J. (2015). Magnesium in man: Implications for health and disease. Physiological Reviews, 95(1), 1–46.CrossRefGoogle Scholar
  66. de Pee, S., Bloem, M. W., Sari, M., Kiess, L., Yip, R., & Kosen, S. (2002). The high prevalence of low hemoglobin concentration among Indonesian infants aged 3–5 months is related to maternal anemia. The Journal of Nutrition, 132(8), 2215–2221.CrossRefGoogle Scholar
  67. Deke, A. L., Adugna, W. T., & Fite, A. T. (2016). Soil physic-chemical properties in termite mounds and adjacent control soil in Miyo and Yabello Districts of Borana Zone, Southern Ethiopia. American Journal of Agriculture and Forestry, 4(4), 69–74.CrossRefGoogle Scholar
  68. Del Valle, H. B., Yaktine, A. L., Taylor, C. L., & Ross, A. C. (Eds.) (2011). Dietary reference intakes for calcium and vitamin D. National Academies Press. Retrieved from: Last accessed on January 2019.
  69. Delgado, I. F., & Paumgartten, F. J. R. (2013). Current challenges in toxicological research: Evaluation of the developmental toxicity of manufactured nanomaterials. Vigilância Sanitária em Debate, 1(4), 11–24.Google Scholar
  70. Dhembare, A. J. (2013). Physico-chemical properties of termite mound soil. Archives of Applied Science Research, 5(6), 123–126.Google Scholar
  71. Dickinson, N., Macpherson, G., Hursthouse, A. S., & Atkinson, J. (2009). Micronutrient deficiencies in maternity and child health: A review of environmental and social context and implications for Malawi. Environmental Geochemistry and Health, 31(2), 253.CrossRefGoogle Scholar
  72. Diko, M. L., & Diko, C. (2014). Physico-chemistry of geophagic soils ingested to relief nausea and vomiting during pregnancy. African Journal of Traditional, Complementary and Alternative Medicines, 11(3), 21–24.CrossRefGoogle Scholar
  73. Diko, M. L., & Ekosse, G. E. (2014). Soil ingestion and associated health implications: A physicochemical and mineralogical appraisal of geophagic soils from Moko, Cameroon. EthnoMed, 8(1), 83–88.Google Scholar
  74. Dissanayake, C. B., & Chandrajith, R. (Eds.) (2009). Geological basis of podoconiosis, geophagy and other diseases. In Introduction to medical geology (pp. 223–235). Springer:Heidelberg.Google Scholar
  75. Doe, E. D., Awua, A., Achoribo, S. E. A., Adu-Bobi, N. A. K., Donko, S., Baidoo, I., et al. (2012). Essential and toxic element present in clay obtained from Ghanaian Market. Elixir Applied Biology, 47, 8633–8636.Google Scholar
  76. Domingo, J. L., i Fosch, M. T. C., & Arnáiz, M. G. (2000). Risks of aluminium exposure during pregnancy. Contributions to Science, 1(4), 479–487.Google Scholar
  77. Donovan, S. E., Eggleton, P., & Bignell, D. E. (2001). Gut content analysis and a new feeding group classification of termites. Ecological Entomology, 26, 356–366.CrossRefGoogle Scholar
  78. Dowuona, G. N. N., Pearl, A., Baba, E. M., Eric, K. N., et al. (2012). Characteristics of termite mounds and associated acrisols in the coastal savanna zone of Ghana and impact on hydraulic conductivity. Natural Science, 4(7), 423–437.CrossRefGoogle Scholar
  79. Doyle, M. E., & Glass, K. A. (2010). Sodium reduction and its effect on food safety, food quality, and human health. Comprehensive Reviews in Food Science and Food Safety, 9(1), 44–56.CrossRefGoogle Scholar
  80. Duda-Chodak, A., & Blaszczyk, U. (2008). The impact of nickel on human health. Journal of Elementology, 13(4), 685–693.Google Scholar
  81. Eastmond, D. A., MacGregor, J. T., & Slesinski, R. S. (2008). Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology, 38(3), 173–190.CrossRefGoogle Scholar
  82. Eiley, A. S., & Katz, S. H. (1998). Geophagy in pregnancy: A test of a hypothesis. Current Anthropology, 39(4), 532–545.CrossRefGoogle Scholar
  83. Ekosse, G. I., & Anyangwe, S. (2012). Mineralogical and particulate morphological characterization of geophagic clayey soils from Botswana. Bulletin of the Chemical Society of Ethiopia, 26(3), 373–382.CrossRefGoogle Scholar
  84. Ekosse, G. E., De Jager, L., & Ngole, V. (2010). Traditional mining and mineralogy of geophagic clays from Limpopo and Free State provinces, South Africa. African Journal of Biotechnology, 9(47), 8058–8067.CrossRefGoogle Scholar
  85. Ekosse, E. G. I., & Jumbam, N. D. (2010). Geophagic clays: Their mineralogy, chemistry and possible human health effects. African Journal of Biotechnology, 9(40), 6755–6767.Google Scholar
  86. Erens, H., Mujinya, B. B., Mees, F., Baert, G., Boeckx, P., Malaisse, F., et al. (2015). The origin and implications of variations in soil-related properties within Macrotermes falciger mounds. Geoderma, 249, 40–50.CrossRefGoogle Scholar
  87. Erpenbach, A., & Wittig, R. (2016). Termites and savannas—An overview on history and recent scientific progress with particular respect to West Africa and to the genus Macrotermes. Flora Veg Sudano-Sambesica, 19, 35–51.Google Scholar
  88. FAO/WHO Joint Expert Committee on Food Additives (JECFA). (2003). Summary and conclusions. 61st Meeting, Rome, 1019 June 2003. Last accessed January 2019.
  89. Fernández-Caliani, J. C., & Cantano, M. (2010). Intensive kaolinization during a lateritic weathering event in South-West Spain: Mineralogical and geochemical inferences from a relict paleosol. Catena, 80(1), 23–33.CrossRefGoogle Scholar
  90. Fife, J. A., Cabot Corp (1999). Method for controlling the oxygen content in valve metal materials. U.S. Patent number 5, 993, 513 (pp.1–12).Google Scholar
  91. Finley, J. W. (1999). Manganese absorption and retention by young women is associated with serum ferritin concentration. The American Journal of Clinical Nutrition, 70(1), 37–43.CrossRefGoogle Scholar
  92. Foley, N. K. (1999). Environmental characteristics of clays and clay mineral deposits, USA: U.S. Department of the Interior. Retrieved from: Last accessed January 2019.
  93. Francoise, F.L. (1994). The possible nutritional/medicinal value of some termite mounds used by Aboriginal communities of Nauiyu Nambiyu (Daly River) and Elliott of the Northern Territory, with emphasis on mineral elements. Master’s Thesis, pp. 1–282. University of Queensland, Australia.Google Scholar
  94. Fuentes-Gandara, F., Pinedo-Hernández, J., Marrugo-Negrete, J., & Díez, S. (2018). Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environmental Geochemistry and Health, 40(1), 229–242.CrossRefGoogle Scholar
  95. Geissler, P. W., Mwaniki, D. L., Thiong’o, F., & Friis, H. (1997). Geophagy among school children in Western Kenya. Tropical Medicine & International Health, 2(7), 624–630.CrossRefGoogle Scholar
  96. Geissler, P. W., Mwaniki, D., Thiong’o, F., & Friis, H. (1998a). Geophagy as a risk factor for geohelminth infections: A longitudinal study of Kenyan primary schoolchildren. Transactions of the Royal Society of Tropical Medicine and Hygiene, 92(1), 7–11.CrossRefGoogle Scholar
  97. Geissler, P. W., Prince, R. J., Levene, M., Poda, C., Beckerleg, S. E., Mutemi, W., et al. (1999). Perceptions of soil-eating and anaemia among pregnant women on the Kenyan coast. Social Science and Medicine, 48(8), 1069–1079.CrossRefGoogle Scholar
  98. Geissler, P. W., Shulman, C. E., Prince, R. J., Mutemi, W., Mnazi, C., Friis, H., et al. (1998b). Geophagy, iron status and anaemia among pregnant women on the coast of Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 92(5), 549–553.CrossRefGoogle Scholar
  99. George, G., & Ndip, E. (2011). Prevalence of Geophagy and its possible implications to health—A study in rural South Africa. In 2nd international conference on environmental science and development IPCBEE (vol.4). Last accessed January 2019.
  100. Ghadiri, M., Chrzanowski, W., & Rohanizadeh, R. (2015). Biomedical applications of cationic clay minerals. RSC Advances, 5(37), 29467–29481.CrossRefGoogle Scholar
  101. Ghorbani H. (2008). Geophagy, a soil- environmental related disease. International Meeting on Soil Fertility, Land Management and Agro climatology, pp. 957–967.Google Scholar
  102. Gichumbi, J., Maghanga, J. K., Cheshari, E. C., Ongulu, R. O., & Gichuki, J. G. (2012). Comparison of chemical and mineralogical properties of geophagic materials from Taita and Mombasa, Kenya. International Journal of Scientific and Engineering Research, 3(10), 1–7.Google Scholar
  103. Goldberg, S., & Forster, H. S. (1990). Flocculation of reference clays and arid-zone soil clays. Soil Science Society of America Journal, 54, 714–718.CrossRefGoogle Scholar
  104. Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38(2), 232–242.CrossRefGoogle Scholar
  105. Gomes, C. D. S. F. (2017). Healing and edible clays: A review of basic concepts, benefits and risks. Environmental Geochemistry and Health, 40(5), 1739–1765.CrossRefGoogle Scholar
  106. Gomes, C. S. F., Hernandez, R., Sequeira, M. C., & Silva, J. B. P. (2012). Characterization of clays used for medicinal purposes in the Archipelago of Cape Verde. Geochimica Brasiliensis, 23(3), 315–331.Google Scholar
  107. Gomes, C. D. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36(1–3), 4–21.CrossRefGoogle Scholar
  108. Gonzalez, M. J., Aguilar, M. V., & Martinez, M. P. (1995). Gastrointestinal absorption of inorganic arsenic (V): The effect of concentration and interactions with phosphate and dichromate. Veterinary and Human Toxicology, 37(2), 131–136.Google Scholar
  109. Gordon, R. F. (1977). Poultry diseases. London: The English Language Book Society and Bailliere Tindall.Google Scholar
  110. Guertin, J. (2004). Toxicity and health effects of chromium (all oxidation states). In Chromium (VI) handbook (pp. 215–230). Boca Raton: CRC Press.CrossRefGoogle Scholar
  111. Guggenheim, S. (1993). Introduction to the properties of clay minerals. University of Illinois at Chicago, pp. 371–388.Google Scholar
  112. Gunderson, E. L. (1988). FDA total diet study, April 1982–April 1984, dietary intakes of pesticides, selected elements, and other chemicals. Journal-Association of Official Analytical Chemists, 71(6), 1200–1209.Google Scholar
  113. Gupta, R. K. (1998). Aluminum compounds as vaccine adjuvants. Advanced Drug Delivery Reviews, 32(3), 155–172.CrossRefGoogle Scholar
  114. Hacker, A. N., Fung, E. B., & King, J. C. (2012). Role of calcium during pregnancy: Maternal and foetal needs. Nutrition Reviews, 70(7), 397–409.CrossRefGoogle Scholar
  115. Hambidge, M. (2000). Human zinc deficiency. The Journal of Nutrition, 130(5), 1344S–1349S.CrossRefGoogle Scholar
  116. HSDB, Hazardous substances data bank. (1998). Bethesda, MD, National Institutes of Health, National Library of Medicine. Last accessed January 2019.
  117. Heine, K., & Völkel, J. (2010). Soil clay minerals in Namibia and their significance for the terrestrial and marine past global change research. African Study Monographs, 40, 31–50.Google Scholar
  118. Heming, N., Montravers, P., & Lasocki, S. (2011). Iron deficiency in critically ill patients: Highlighting the role of hepcidin. Critical Care, 15(2), 210.CrossRefGoogle Scholar
  119. Henry, J. M., Cring, F. D., Brevik, E. C., & Burgess, L. C. (2013). Geophagy: An anthropological perspective. In E. C. Brevik, & L. C. Burgess (Eds.), Soils and human health (pp. 179–199). Florida: CRC Press Taylor & Francis.Google Scholar
  120. Hergüner, S., Özyıldırım, İ., & Tanıdır, C. (2008). Is Pica an eating disorder or an obsessive–compulsive spectrum disorder? Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(8), 2010–2011.CrossRefGoogle Scholar
  121. Holt, J. A., & Lepage, M. (2000). Termites and soil properties. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 389–407). Dordrecht: Springer.CrossRefGoogle Scholar
  122. Hood, R. D., & Harrison, W. P. (1982). Effects of prenatal arsenite exposure in the hamster. Bulletin of Environmental Contamination and Toxicology, 29(6), 671–678.CrossRefGoogle Scholar
  123. Howe, P., Malcolm, H., & Dobson, S. (2004). Manganese and its compounds: environmental aspects. In World Health Organization, Concise international chemical assessment document. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. (No. 63, pp. 1–61).
  124. Huebl, L., Leick, S., Guettl, L., Akello, G., & Kutalek, R. (2016). Geophagy in northern Uganda: Perspectives from consumers and clinicians. The American Journal of Tropical Medicine and Hygiene, 95(6), 1440–1449.CrossRefGoogle Scholar
  125. Hunter, J. M. (1993). Macroterme geophagy and pregnancy clays in southern Africa. Journal of Cultural Geography, 14(1), 69–92.CrossRefGoogle Scholar
  126. Irwin, R. J., Van Mouwerik, M., Stevens, L., Seese, M. D., & Basham, W. (1997). Environmental contaminants encyclopedia: Lead entry. National Parks Service, Water Resources Division, Fort Collins, Colorado, pp. 1–116.Google Scholar
  127. Ivoke, N., Ikpor, N., Ivoke, O., Ekeh, F., Ezenwaji, N., Odo, G., et al. (2017). Geophagy as risk behaviour for gastrointestinal nematode infections among pregnant women attending antenatal clinics in a humid tropical zone of Nigeria. African Health Sciences, 17(1), 24–31.CrossRefGoogle Scholar
  128. Izugbara, C. O. (2003). The cultural context of geophagy among pregnant and lactating Ngwa women of Southeastern Nigeria. African anthropologist, 10(2), 180–199.Google Scholar
  129. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.CrossRefGoogle Scholar
  130. Jia, X., Wang, S., Zhou, L., & Sun, L. (2017). The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Research Letters, 12(1), 478.CrossRefGoogle Scholar
  131. Johnson, L. (2006). Gastrointestinal physiology (7th ed., pp. 1–176)., Mosby physiology monograph series Amsterdam: Elsevier.Google Scholar
  132. Johnson, P. E., Hunt, C. D., Milne, D. B., & Mullen, L. K. (1993). Homeostatic control of zinc metabolism in men: Zinc excretion and balance in men fed diets low in zinc. The American Journal of Clinical Nutrition, 57(4), 557–565.CrossRefGoogle Scholar
  133. Johnson, J. E., Webb, S. M., Ma, C., & Fischer, W. W. (2016). Manganese mineralogy and diagenesis in the sedimentary rock record. Geochimica et Cosmochimica Acta, 173, 210–231.CrossRefGoogle Scholar
  134. Jokinen, R. (1990). Magnesium in the environment. Metal Ions in Biological Systems, 26, 15–31.Google Scholar
  135. Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H., & Mahlangu, Z. (2013). Termite mounds as islands: Woody plant assemblages relative to termitarium size and soil properties. Journal of Vegetation Science, 24(4), 702–711.CrossRefGoogle Scholar
  136. Jouquet, P., Bottinelli, N., Lata, J. C., Mora, P., & Caquineau, S. (2007). Role of the fungus-growing termite Pseudacanthotermes spiniger (Isoptera, Macrotermitinae) in the dynamic of clay and soil organic matter content. An experimental analysis. Geoderma, 139(1–2), 127–133.CrossRefGoogle Scholar
  137. Jouquet, P., Guilleux, N., Shanbhag, R. R., & Subramanian, S. (2015). Influence of soil type on the properties of termite mound nests in Southern India. Applied Soil Ecology, 96, 282–287.CrossRefGoogle Scholar
  138. Jouquet, P., Lepage, M., & Velde, B. (2002). Termite soil preferences and particle selections: Strategies related to ecological requirements. Insectes Sociaux, 49(1), 1–7.CrossRefGoogle Scholar
  139. Jovanović, B. (2015). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10–20.CrossRefGoogle Scholar
  140. Kabata-pendias, A. (1993). Glin w srodowisku przyrodniczym. Rocz PZH, 44, 1.Google Scholar
  141. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human (pp. 1–550). Berlin: Springer.CrossRefGoogle Scholar
  142. Kambunga, S. N., Candeias, C., Hasheela, I., & Mouri, H. (2019). The geochemistry of geophagic material consumed in Onangama Village, Northern Namibia: A potential health hazard for pregnant women in the area. Environmental Geochemistry and Health. Scholar
  143. Kandasami, R. K., Borges, R. M., & Murthy, T. G. (2016). Effect of biocementation on the strength and stability of termite mounds. Environmental Geotechnics, 3(2), 99–113.CrossRefGoogle Scholar
  144. Kapoor, N., & Prakash, T. (2013). Effects of heavy metal poisoning during pregnancy. International Research Journal of Environmental Sciences, 2(1), 88–92.Google Scholar
  145. Karoui, A., & Karoui, H. (1993). Pica in Tunisian children. Results of a survey performed in a polyclinic of the Tunisian social security national administration. Pediatrie, 48(7–8), 565–569.Google Scholar
  146. Kaschuk, G., Santos, J. C. P., Almeida, J. A., Sinhorati, D. C., & Berton-Junior, J. F. (2006). Termite activity in relation to natural grassland soil attributes. Scientia Agricola, 63(6), 583–588.CrossRefGoogle Scholar
  147. Kawahara, M., Konoha, K., Nagata, T., & Sadakane, Y. (2007). Aluminum and human health: Its intake, bioavailability and neurotoxicity. Biomedical Research on Trace Elements, 18(3), 211–220.Google Scholar
  148. Kawai, K., Saathoff, E., Antelman, G., Msamanga, G., & Fawzi, W. W. (2009). Geophagy (soil-eating) in relation to anemia and helminth infection among HIV-infected pregnant women in Tanzania. The American Journal of Tropical Medicine and Hygiene, 80(1), 36–43.CrossRefGoogle Scholar
  149. Keen, C. L., Uriu-Hare, J. Y., Hawk, S. N., Jankowski, M. A., Daston, G. P., Kwik-Uribe, C. L., et al. (1998). Effect of copper deficiency on prenatal development and pregnancy outcome. The American Journal of Clinical Nutrition, 67(5), 1003S–1011S.CrossRefGoogle Scholar
  150. Kerr, D. N., Ward, M. K., Ellis, H. A., Simpson, W., & Parkinson, I. S. (1992). Aluminium intoxication in renal disease. In D. J. Chadwick, & J. Whelan (Eds.), Aluminium in biology and medicine (pp. 123–141). John Wiley & Sons.Google Scholar
  151. Khare, K. B., Coetzee, T., Thobane, N., Wale, K., & Loeto, D. (2017). Fungal infestation of termite mounds in Kopong, Botswana and their effects in mice red blood cells. European Journal of Biomedical and Pharmaceutical Sciences, 4(2), 380–384.Google Scholar
  152. King, T., Andrews, P., & Boz, B. (1999). Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology, 108(3), 359–373.CrossRefGoogle Scholar
  153. Knudsen, J. W. (2002). Kula Udongo (earth eating habits): A social and cultural practice among Chagga Women on the slopes of Mount Kilimanjaro. Indilinga African Journal of Indigenous Knowledge Systems, 1(1), 19–25.CrossRefGoogle Scholar
  154. Kootbodien, T., Mathee, A., Naicker, N., & Moodley, N. (2012). Heavy metal contamination in a school vegetable garden in Johannesburg. SAMJ: South African Medical Journal, 102(4), 226–227.Google Scholar
  155. Korb, J. (2003). Thermoregulation and ventilation of termite mounds. Naturwissenschaften, 90(5), 212–219.CrossRefGoogle Scholar
  156. Krejpcio, Z. (2001). Essentiality of chromium for human nutrition and health. Polish Journal of Environmental Studies, 10(6), 399–404.Google Scholar
  157. Krewski, D., Yokel, R. A., Nieboer, E., Borchelt, D., Cohen, J., Harry, J., et al. (2007). Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. Journal of Toxicology and Environmental Health, Part B, 10(S1), 1–269.CrossRefGoogle Scholar
  158. Kumar, S., & Trivedi, A. V. (2016). A review on role of nickel in the biological system. International Journal of Current Microbiology and Applied Sciences, 5(3), 719–727.CrossRefGoogle Scholar
  159. Kurakevych, O. O., Le Godec, Y., Strobel, T. A., Kim, D. Y., Crichton, W. A., & Guignard, J. (2017). Exploring silicon allotropy and chemistry by high pressure–high temperature conditions. In Journal of Physics: Conference Series (950(4), p. 042049). IOP Publishing.Google Scholar
  160. Kuroda, Y., & Kawahara, M. (1994). Aggregation of amyloid β-protein and its neurotoxicity: Enhancement by aluminium and other metals. The Tohoku Journal of Experimental Medicine, 174(3), 263–268.CrossRefGoogle Scholar
  161. Ladipo, O. A. (2000). Nutrition in pregnancy: Mineral and vitamin supplements. The American Journal of Clinical Nutrition, 72, 280S–290S.CrossRefGoogle Scholar
  162. Lajçi, N., Sadiku, M., Lajçi, X., Baruti, B., & Nikshiq, S. (2017). Assessment of major and trace elements of fresh water springs in Village Pepaj, Rugova Region, Kosova. Journal of International Environmental Application & Science, 12(2), 112–120.Google Scholar
  163. Lakudzala, D. D., & Khonje, J. J. (2011). Nutritive potential of some ‘edible’soils in Blantyre city, Malawi. Malawi Medical Journal, 23(2), 38–42.CrossRefGoogle Scholar
  164. Landry, K. (2014). Human health effects of dietary aluminum. Revue interdisciplinaire des sciences de la santé-Interdisciplinary. Journal of Health Sciences, 4(1), 39–44.Google Scholar
  165. Lar, U. A., Agene, J. I., & Umar, A. I. (2015). Geophagic clay materials from Nigeria: A potential source of heavy metals and human health implications in mostly women and children who practice it. Environmental Geochemistry and Health, 37(2), 363–375.CrossRefGoogle Scholar
  166. Larsson, S. C., & Wolk, A. (2007). Magnesium intake and risk of type 2 diabetes: A meta-analysis. Journal of Internal Medicine, 262(2), 208–214.CrossRefGoogle Scholar
  167. Lehnhardt, A., & Kemper, M. J. (2011). Pathogenesis, diagnosis and management of hyperkalemia. Pediatric Nephrology, 26(3), 377–384.CrossRefGoogle Scholar
  168. Leonard, J., & Rajot, J. (2001). Influence of termites on runoff and infiltration: Quantification and analysis. Geoderma, 104, 17–40.CrossRefGoogle Scholar
  169. Liamis, G., Milionis, H., & Elisaf, M. (2008). A review of drug-induced hyponatremia. American Journal of Kidney Diseases, 52(1), 144–153.CrossRefGoogle Scholar
  170. Limpitlaw, U. G. (2010). Ingestion of earth materials for health by humans and animals. International Geology Review, 52(7–8), 726–744.CrossRefGoogle Scholar
  171. Lucian, B., Camelia, B., Vasile, B., Otilia, M., & Mariana, M. (2010). Report on the influence of heavy metals on the evolution of the pregnancy in smoking mothers. Analele Universitătii din Oradea Fascicula: Ecotoxicologie, Zootehnie si Tehnologii de Industrie Alimentară, pp. 99–104.Google Scholar
  172. Luoba, A. I., Geissler, P. W., Estambale, B., Ouma, J. H., Magnussen, P., Alusala, D., et al. (2004). Geophagy among pregnant and lactating women in Bondo District, western Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(12), 734–741.CrossRefGoogle Scholar
  173. Luoba, A. I., Wenzel Geissler, P., Estambale, B., Ouma, J. H., Alusala, D., Ayah, R., et al. (2005). Earth-eating and reinfection with intestinal helminths among pregnant and lactating women in western Kenya. Tropical Medicine & International Health, 10(3), 220–227.CrossRefGoogle Scholar
  174. Macheka, L. R., Olowoyo, J. O., Matsela, L., & Khine, A. A. (2016). Prevalence of geophagia and its contributing factors among pregnant women at Dr. George Mukhari Academic Hospital, Pretoria. African Health Sciences, 16(4), 972–978.CrossRefGoogle Scholar
  175. Mahaney, W. C., Hancock, R. G. V., Aufreiter, S., & Huffman, M. A. (1996). Geochemistry and clay mineralogy of termite mound soil and the role of geophagy in chimpanzees of the Mahale Mountains, Tanzania. Primates, 37(2), 121–134.CrossRefGoogle Scholar
  176. Mahaney, W. C., Zippin, J., Milner, M. W., Sanmugadas, K., Hancock, R. G. V., Aufreiter, S., et al. (1999). Chemistry, mineralogy and microbiology of termite mound soil eaten by the chimpanzees of the Mahale Mountains, Western Tanzania. Journal of Tropical Ecology, 15(5), 565–588.CrossRefGoogle Scholar
  177. Marques, M. P. M., Gianolio, D., Ramos, S., Batista de Carvalho, L. A., & Aureliano, M. (2017). An EXAFS approach to the study of polyoxometalate-protein interactions: The case of decavanadate-actin. Inorganic Chemistry, 56(18), 10893–10903.CrossRefGoogle Scholar
  178. Mashao, U. (2018). Mineralogy and geochemistry of geophagic materials from Mashau Village in Limpopo Province, South Africa. Doctoral dissertation, pp. 1–146. University of Venda, South Africa.Google Scholar
  179. Mateos-Nava, R. A., Rodríguez-Mercado, J. J., & Altamirano-Lozano, M. A. (2017). Premature chromatid separation and altered proliferation of human leukocytes treated with vanadium (III) oxide. Drug and Chemical Toxicology, 40(4), 457–462.CrossRefGoogle Scholar
  180. Mathee, A., Naicker, N., Kootbodien, T., Mahuma, T., Nkomo, P., Naik, I., et al. (2014). A cross-sectional analytical study of geophagia practices and blood metal concentrations in pregnant women in Johannesburg, South Africa. SAMJ: South African Medical Journal, 104(8), 568–573.CrossRefGoogle Scholar
  181. McKenna, D. (2006). Myopathy, hypokalaemia and pica (geophagia) in pregnancy. The Ulster Medical Journal, 75(2), 159.Google Scholar
  182. Mcloughlin, I. J. (1987). The pica habit. Hospital Medicine, 37, 286–290.Google Scholar
  183. Mensah, F. O., Twumasi, P., Amenawonyo, X. K., Larbie, C., & Jnr, A. K. B. (2010). Pica practice among pregnant women in the Kumasi metropolis of Ghana. International Health, 2(4), 282–286.CrossRefGoogle Scholar
  184. Mikkelsen, T. B., Andersen, A. M. N., & Olsen, S. F. (2006). Pica in pregnancy in a privileged population: Myth or reality. Acta Obstetricia et Gynecologica Scandinavica, 85(10), 1265–1266.CrossRefGoogle Scholar
  185. Mills, A. J., Milewski, A., Fey, M. V., Groengroeft, A., & Petersen, A. (2009). Fungus culturing, nutrient mining and geophagy: A geochemical investigation of Macrotermes and Trinervitermes mounds in southern Africa. Journal of Zoology, 278(1), 24–35.CrossRefGoogle Scholar
  186. Milton, A. H., Hussain, S., Akter, S., Rahman, M., Mouly, T. A., & Mitchell, K. (2017). A review of the effects of chronic arsenic exposure on adverse pregnancy outcomes. International Journal of Environmental Research and Public Health, 14(6), 556.CrossRefGoogle Scholar
  187. Mishra, S., Mattusch, J., & Wennrich, R. (2017). Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Scientific Reports, 7, 40522.CrossRefGoogle Scholar
  188. Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. The Open Nutraceuticals Journal, 3(1), 94–99.Google Scholar
  189. Mujinya, B. B., Mees, F., Boeckx, P., Bodé, S., Baert, G., Erens, H., et al. (2011). The origin of carbonates in termite mounds of the Lubumbashi area, DR Congo. Geoderma, 165(1), 95–105.CrossRefGoogle Scholar
  190. Mujinya, B. B., Mees, F., Erens, H., Dumon, M., Baert, G., Boeckx, P., et al. (2013). Clay composition and properties in termite mounds of the Lubumbashi area, DR Congo. Geoderma, 192, 304–315.CrossRefGoogle Scholar
  191. Mujinya, B. B., Van Ranst, E., Verdoodt, A., Baert, G., & Ngongo, L. M. (2010). Termite bioturbation effects on electro-chemical properties of Ferralsols in the Upper Katanga (DR Congo). Geoderma, 158(3–4), 233–241.CrossRefGoogle Scholar
  192. Murray, R. K., Granner, D. K., Mayes, P. A., & Rodwell, V. W. (2000). Harper’s biochemistry (25th ed., pp. 715–736). New York: McGraw-Hill Press.Google Scholar
  193. Mwangi, J., & Ochieng, O. (2011). Analyses of geophagic materials consumed by pregnant women in Embu, Meru and Chuka towns in eastern province, Kenya. Journal of Environmental Chemistry and Ecotoxicology, 3(13), 340–344.Google Scholar
  194. Myaruhucha, C. N. (2009). Food cravings, aversions and pica among pregnant women in Dar es Salaam, Tanzania. Tanzania Journal of Health Research, 11(1), 29–34.CrossRefGoogle Scholar
  195. Nchito, M., Geissler, P. W., Mubila, L., Friis, H., & Olsen, A. (2004). Effects of iron and multimicronutrient supplementation on geophagy: A two-by-two factorial study among Zambian schoolchildren in Lusaka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(4), 218–227.CrossRefGoogle Scholar
  196. Neeti, K., & Prakash, T. (2013). Effects of heavy metal poisoning during pregnancy. International Research Journal of Environmental Sciences, 2, 88–92.Google Scholar
  197. Ngole, V. M., & Ekosse, G. E. (2012). Physico-chemistry, mineralogy, geochemistry and nutrient bioaccessibility of geophagic soils from Eastern Cape, South Africa. Scientific Research and Essays, 7(12), 1319–1331.CrossRefGoogle Scholar
  198. Ngole, V. M., Ekosse, G. E., de Jager, L., & Songca, S. P. (2010). Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. African Journal of Biotechnology, 9(36), 5929–5937.Google Scholar
  199. Ngole, V., Mpuchane, S., & Totolo, O. (2006). Survival of faecal coliforms in four different types of sludge-amended soils in Botswana. European Journal of Soil Biology, 42(4), 208–218.CrossRefGoogle Scholar
  200. Ngole-Jeme, V., & Ekosse, G. I. (2015). A comparative analysis of granulometry, mineral composition and major and trace element concentrations in soils commonly ingested by humans. International Journal of Environmental Research and Public Health, 12(8), 8933–8955.CrossRefGoogle Scholar
  201. Ngozi, P. O. (2008). Pica practices of pregnant women in Nairobi, Kenya. East African Medical Journal, 85(2), 72–79.CrossRefGoogle Scholar
  202. Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions, 188(2), 276–288.CrossRefGoogle Scholar
  203. Nielsen, F. H. (1987). Trace element in human and animal nutrition (5th ed., Vol. 2, pp. 1–499). Cambridge: Academic Press.Google Scholar
  204. Nielsen, F. H. (1999). Ultratrace minerals. In M. E. Shils, J. A. Olsen, M. Shike, & A. C. Ross (Eds.), Modern nutrition in health and diseases (9th ed., pp. 283–303). Baltimore: Williams and Wilkins.Google Scholar
  205. NIH, National Institutes of Health. (2009). In dietary supplement fact sheet: Calcium. Last accessed January 2019.
  206. Njiru, H., Elchalal, U., & Paltiel, O. (2011). Geophagy during pregnancy in Africa: A literature review. Obstetrical & Gynecological Survey, 66(7), 452–459.CrossRefGoogle Scholar
  207. Njoki, A. N., & Kiprono, C. K. (2009). Analysis of geophagic materials consumed by pregnant women in Eldoret municipality, Kenya. International Journal of Pure and Applied Sciences and Technology, 1, 18–24.Google Scholar
  208. Noguti, J., de Oliveira, F., Peres, R. C., Renno, A. C. M., & Ribeiro, D. A. (2012). The role of fluoride on the process of titanium corrosion in oral cavity. BioMetals, 25(5), 859–862.CrossRefGoogle Scholar
  209. Nordberg, G. F., Fowler, B. A., & Nordberg, M. (Eds.). (2014). Handbook on the toxicology of metals, (Vol. 2, pp. 1–547). Cambridge: Academic Press.Google Scholar
  210. Norman, I. D., Binka, F. N., Aikins, M. K., Zotor, F. B., & Godi, A. H. (2015). Is geophagia a health-seeking behavior or an ethnic remedy towards a greater personal resilience? Donnish Journal of Neuroscience and Behavioral Health, 1(1), 001–011.Google Scholar
  211. Nriagu, J. O. (1998). Vanadium in the environment. Part 2: Health effects (pp. 1–424). New York: Wiley.Google Scholar
  212. Nyanza, E. C., Joseph, M., Premji, S. S., Thomas, D. S., & Mannion, C. (2014). Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania. BMC Pregnancy and Childbirth, 14(1), 144.CrossRefGoogle Scholar
  213. Ohkuma, M. (2003). Termite symbiotic systems: Efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology, 61(1), 1–9.CrossRefGoogle Scholar
  214. Okereafor, G. U., Biswas, S., Mulaba-Bafubiandi, A. F., & Mavumengwana, V. (2018). Clayey minerals and clayey soils as possible microorganism repositories. Transactions of the Royal Society of South Africa, 73(1), 79–85.CrossRefGoogle Scholar
  215. Okereafor, G. U., Mavumengwana, V., & Mulaba-Bafubiandi, F. A. (2016). Mineralogical Profile of Geophagic Clayey Soils Sold in Selected South African Informal Markets. In International conference on advances in science, engineering, technology and natural resources, pp. 179–185.Google Scholar
  216. Olatunji, A. S., Olajide-Kayode, J. O., & Abimbola, A. F. (2014). Evaluation of geochemical characteristics and health effects of some geophagic clays southern Nigeria. Environmental Geochemistry and Health, 36(6), 1105–1114.CrossRefGoogle Scholar
  217. Olivares, M., & Uauy, R. (2005). Essential nutrients in drinking water. In WHO (Ed.), Nutrients in drinking water (pp. 41–60). Geneva: World Health Organization.Google Scholar
  218. Oomen, A. G., Sips, A. J., Groten, J. P., Sijm, D. T., & Tolls, J. (2000). Mobilization of PCBs and lindane from soil during in vitro digestion and their distribution among bile salt micelles and proteins of human digestive fluid and the soil. Environmental Science and Technology, 34(2), 297–303.CrossRefGoogle Scholar
  219. Paikaray, S. (2015). Arsenic geochemistry of acid mine drainage. Mine Water and the Environment, 34(2), 181–196.CrossRefGoogle Scholar
  220. Parmalee, N. L., & Aschner, M. (2016). Manganese and aging. Neurotoxicology, 56, 262–268.CrossRefGoogle Scholar
  221. Paternain, J. L., Domingo, J. L., Llobet, J. M., & Corbella, J. (1988). Embryotoxic and teratogenic effects of aluminum nitrate in rats upon oral administration. Teratology, 38(3), 253–257.CrossRefGoogle Scholar
  222. Patone, H., Barker, J., & Roberge, D. (2006). Effects of neurosurgical titanium mesh on radiation dose. Medical Dosimetry, 31(4), 298–301.CrossRefGoogle Scholar
  223. Patterson, C. T. (1980). An alternative perspective-lead pollution in the human environment: origin, extent, and significance. In Lead in the human environment (pp. 265–349). Washington: National Academy of Science.Google Scholar
  224. Pennington, J. A. (1988). Aluminium content of foods and diets. Food Additives & Contaminants, 5(2), 161–232.CrossRefGoogle Scholar
  225. Pennington, J. A. T. (1991). Silicon in foods and drinks. Food Additives & Contaminants, 8(1), 97–118.CrossRefGoogle Scholar
  226. Pérez-Granados, A. M., & Vaquero, M. P. (2002). Silicon, aluminium, arsenic and lithium: Essentiality and human health implications. Journal of Nutrition Health and Aging, 6(2), 154–162.Google Scholar
  227. Petzold, K., & Al-Hashimi, H. M. (2011). RNA structure: Adding a second dimension. Nature Chemistry, 3(12), 913.CrossRefGoogle Scholar
  228. Phippen, B., Horvath, C., Nordin, R., & Nagpal, N. (2008). Ministry of environment province of British Columbia: Ambient water quality guidelines for iron. An overview report: 978-0-7726-5990-3, 1–47.Google Scholar
  229. Picciano, M. F. (1996). Pregnancy and lactation. In E. E. Ziegler, & L. J. Filer (Eds.), Present knowledge in nutrition (pp. 384–395). Washington: ILSI Press.Google Scholar
  230. Pohl, H. R., Wheeler, J. S., & Murray, H. E. (2013). Sodium and potassium in health and disease. In A. Sigel, H. Sigel, & R. K. Sigel (Eds.), Interrelations between essential metal ions and human diseases (pp. 29–47). Dordrecht: Springer.CrossRefGoogle Scholar
  231. Poitrasson, F. (2017). Silicon isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1), 289–344.CrossRefGoogle Scholar
  232. Price, W. A. (2000). Nutrition and physical degeneration (pp. 1–528). La Mesa, CA: Price-Pottenger Nutrition Foundation.Google Scholar
  233. Profet, M. (1992). Pregnancy sickness as adaptation: A deterrent to maternal ingestion of teratogens. In J. H. Barlow, L. Cosmides, & J. Tooby, (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 327–366). Oxford University Press.Google Scholar
  234. Ralph, A., & McArdle, H. (2001). Copper metabolism and copper requirements in the pregnant mother, her fetus, and children. New York, International Copper Association. Copper in the environment and health. Last accessed January 2019.
  235. Ramakrishnan, U. (2000). Functional consequences of nutritional anemia during pregnancy and early childhood. In K. Kraemer, & M. B. Zimmermann (Eds.), Nutritional anemias (pp. 53–78). Boca Raton: CRC Press.CrossRefGoogle Scholar
  236. Reilly, C., & Henry, J. (2000). Geophagia: Why do humans consume soil? Nutrition Bulletin, 25(2), 141–144.CrossRefGoogle Scholar
  237. Reinbacher, W. R. (2003). Healing earths: The third leg of medicine, (Vol. 25, pp. 141–144) Bloomington: 1st Books Library.Google Scholar
  238. Rodríguez, J. P. ed. (2003). Applied study of cultural heritage and clays. In: Correlation between water sorption and other clay properties, Vol. 13. Editorial CSIC-CSIC Press, p. 445.Google Scholar
  239. Rollerova, E., Tulinska, J., Liskova, A., Kuricova, M., Kovriznych, J., Mlynarcikova, A., et al. (2015). Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development. Endocrine Regulations, 49(2), 97–112.CrossRefGoogle Scholar
  240. Roney, N. (2005). Toxicological profile for zinc. Agency for Toxic Substances and Disease Registry, 1-301.Google Scholar
  241. Ronnenberg, A. G., Wood, R. J., Wang, X., Xing, H., Chen, C., Chen, D., et al. (2004). Preconception hemoglobin and ferritin concentrations are associated with pregnancy outcome in a prospective cohort of Chinese women. The Journal of Nutrition, 134(10), 2586–2591.CrossRefGoogle Scholar
  242. Rose, C. R., Blum, R., Kafitz, K. W., Kovalchuk, Y., & Konnerth, A. (2004). From modulator to mediator: Rapid effects of BDNF on ion channels. BioEssays, 26(11), 1185–1194.CrossRefGoogle Scholar
  243. Rowland, M. J. (2002). Geophagy: An assessment of implications for the development of Australian indigenous plant processing technologies. Australian Aboriginal Studies, 1, 51.Google Scholar
  244. Rudnick, R. L., & Gao, S. (2004). Composition of the continental crust. University of Maryland, College Park, MD, USA, pp. 1–56.Google Scholar
  245. Saathoff, E., Olsen, A., Kvalsvig, J. D., & Geissler, P. W. (2002). Geophagy and its association with geohelminth infection in rural schoolchildren from northern KwaZulu-Natal, South Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96(5), 485–490.CrossRefGoogle Scholar
  246. Saha, K. K., Engström, A., Hamadani, J. D., Tofail, F., Rasmussen, K. M., & Vahter, M. (2012). Pre-and postnatal arsenic exposure and body size to 2 years of age: A cohort study in rural Bangladesh. Environmental Health Perspectives, 120(8), 1208.CrossRefGoogle Scholar
  247. Santamaria, A. B. (2008). Manganese exposure, essentiality & toxicity. Indian Journal of Medical Research, 128(4), 484.Google Scholar
  248. Santos-Burgoa, C., Rios, C., Mercado, L. A., Arechiga-Serrano, R., Cano-Valle, F., Eden-Wynter, R. A., et al. (2001). Exposure to manganese: Health effects on the general population, a pilot study in central Mexico. Environmental Research, 85(2), 90–104.CrossRefGoogle Scholar
  249. Sarcinelli, T. S., Schaefer, C. E. G., de Souza Lynch, L., Arato, H. D., Viana, J. H. M., de Albuquerque Filho, M. R., et al. (2009). Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a toposequence in Zona da Mata, Minas Gerais State, Brazil. Catena, 76(2), 107–113.CrossRefGoogle Scholar
  250. Saris, N. E. L., Mervaala, E., Karppanen, H., Khawaja, J. A., & Lewenstam, A. (2000). Magnesium: An update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 294(1), 1–26.CrossRefGoogle Scholar
  251. Sarkar, A., & Paul, B. (2016). The global menace of arsenic and its conventional remediation—A critical review. Chemosphere, 158, 37–49.CrossRefGoogle Scholar
  252. Saunders, C., Padilha, P. D. C., Della Líbera, B., Nogueira, J. L., Oliveira, L. M. D., & Astulla, Á. (2009). Pica: Epidemiology and association with pregnancy complications. Revista Brasileira de Ginecologia e Obstetrícia, 31(9), 440–446.CrossRefGoogle Scholar
  253. Scherz, H., & Kirchhoff, E. (2006). Trace elements in foods: Zinc contents of raw foods—A comparison of data originating from different geographical regions of the world. Journal of Food Composition and Analysis, 19(5), 420–433.CrossRefGoogle Scholar
  254. Senguta, P., Banerjee, R., Nath, S., Das, S., & Banerjee, S. (2014). Metals and female reproductive toxicity. Human and Experimental Toxicity, 34(7), 679–697.CrossRefGoogle Scholar
  255. Seymour, C. L., Milewski, A. V., Mills, A. J., Joseph, G. S., Cumming, G. S., Cumming, D. H. M., et al. (2014). Do the large termite mounds of Macrotermes concentrate micronutrients in addition to macronutrients in nutrient-poor African savannas? Soil Biology & Biochemistry, 68, 95–105.CrossRefGoogle Scholar
  256. Shahidi, D., Roy, R., & Azzouz, A. (2015). Advances in catalytic oxidation of organic pollutants–prospects for thorough mineralization by natural clay catalysts. Applied Catalysis, B: Environmental, 174, 277–292.CrossRefGoogle Scholar
  257. Sheng, H. W. (2000). Sodium, chloride and potassium. In M. H. Stipanuk, & M. A. Caudill, (Eds.), Biochemical and physiological aspects of human nutrition (pp. 686–710). Philadelphia: WB Saunders Company.Google Scholar
  258. Sherwood, L. (1995). Fundamentals of physiology—A human perspective (pp. 1–672). St. Paul, MN: West Publishing Company.Google Scholar
  259. Shinondo, C. J., & Mwikuma, G. (2008). Geophagy as a risk factor for helminth infections in pregnant women in Lusaka, Zambia. Medical Journal of Zambia, 35(2), 48–52.Google Scholar
  260. Sikorski, R., Juszkiewicz, T., Paszkowski, T., & Szprengier-Juszkiewicz, T. (1987). Women in dental surgeries: Reproductive hazards in occupational exposure to metallic mercury. International Archives of Occupational and Environmental Health, 59(6), 551–557.CrossRefGoogle Scholar
  261. Silva, A. L. O. D., Barrocas, P. R., Jacob, S. D. C., & Moreira, J. C. (2005). Dietary intake and health effects of selected toxic elements. Brazilian Journal of Plant Physiology, 17(1), 79–93.CrossRefGoogle Scholar
  262. Simpson, E., Mull, J. D., Longley, E., & East, J. (2000). Pica during pregnancy in low-income women born in Mexico. Western Journal of Medicine, 173(1), 20.CrossRefGoogle Scholar
  263. S’khosana, L. H. (2017). The Prevalence and Nutritional Status of Woman between the Ages of 18 to 45 Years, Practicing Geophagia in the Umzinyathi and UMgungundlovu Districts, KwaZulu-Natal. Doctoral dissertation, pp. 1-66. University of KwaZulu-Natal, Pietermaritzburg, South Africa.Google Scholar
  264. Smith, J. L. (1999). Foodborne infections during pregnancy. Journal of Food Protection, 62(7), 818–829.CrossRefGoogle Scholar
  265. Smith, J. C., & Hsu, J. M. (2018). Zinc, copper, chromium, and selenium. In: Nutritional Approaches To Aging Research. Last accessed January 2019.
  266. Stokes, T. (2006). The earth-eater. Nature, 444, 543–544.CrossRefGoogle Scholar
  267. Swamy, N., & Dewang, D. (2011). Pica disorder (Geophagia): A case report. International Journal of Dental Clinics, 3(4), 70–71.Google Scholar
  268. Tano-Debrah, K., & Bruce-Baiden, G. (2010). Microbiological characterization of dry white clay, a pica element in Ghana. Nature Science Report and Opinion, 2(6), 77–81.Google Scholar
  269. Tassinari, R., Cubadda, F., Moracci, G., Aureli, F., D’Amato, M., Valeri, M., et al. (2014). Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: Focus on reproductive and endocrine systems and spleen. Nanotoxicology, 8(6), 654–662.CrossRefGoogle Scholar
  270. Tayie, F. A., Koduah, G., & Mork, S. A. P. (2013). Geophagia clay soil as a source of mineral nutrients and toxicants. African Journal of Food, Agriculture, Nutrition and Development, 13(1), 7157–7170.CrossRefGoogle Scholar
  271. Thomson, J. (1997). Anaemia in pregnant women in eastern Caprivi, Namibia. South African Medical Journal, 87(11), 1544–1547.Google Scholar
  272. Toker, H., Ozdemir, H., Ozan, F., Turgut, M., Goze, F., Sencan, M., et al. (2009). Dramatic oral findings belonging to a pica patient: A case report. International Dental Journal, 59(1), 26–30.Google Scholar
  273. Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301.CrossRefGoogle Scholar
  274. Turck, D., Bresson, J. L., Burlingame, B., Dean, T., Fairweather-Tait, S., Heinonen, M., et al. (2016). Dietary reference values for potassium. EFSA Journal, 14(10), 4591.Google Scholar
  275. Turner, J. S. (2000). Architecture and morphogenesis in the mound of Macrotermes michaelseni (Sjöstedt) (Isoptera: Termitidae, Macrotermitinae) in northern Namibia. Cimbebasia, 16, 143–175.Google Scholar
  276. Twenefour, D. (1999). Study of clay eating among lactating and pregnant women in the greater Accra region and associated motives and effects. A BSc project report. University of Ghana,Ghana, pp. 1–89.Google Scholar
  277. Uauy, R., Olivares, M., & Gonzalez, M. (1998). Essentiality of copper in humans. The American Journal of Clinical Nutrition, 67(5), 952S–959S.CrossRefGoogle Scholar
  278. Uher, C. (2001). Recent trends in thermoelectric materials research I. Semiconductors and Semimetals, 69, 139–253.CrossRefGoogle Scholar
  279. USEPA, United States Environmental Protection Agency. (1997). Mercury study report to congress volume IV: An assessment of exposure to mercury in the United States. Last accessed January 2019.
  280. USEPA, United States Environmental Protection Agency. (1998). Toxicological review of hexavalent chromium. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. Last accessed January 2019.
  281. USEPA, United States Environmental Protection Agency. (2003). Last accessed January 2019.
  282. USEPA, United States Environmental Protection Agency. (2005). Toxicological review of zinc and compounds (Cas No. 7440-66-6) in support of summary information on the Integrated Risk Information System (IRIS). Last accessed January 2019.
  283. Vaktskjold, A., Talykova, L. V., Chashchin, V. P., Odland, J. Ø., & Nieboer, E. (2008). Spontaneous abortions among nickel-exposed female refinery workers. International Journal of Environmental Health Research, 18(2), 99–115.CrossRefGoogle Scholar
  284. Valko, M. M. H. C. M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.CrossRefGoogle Scholar
  285. van Huis, A. (2017). Cultural significance of termites in sub-Saharan Africa. Journal of Ethnobiology and Ethnomedicine, 13(1), 8.CrossRefGoogle Scholar
  286. Van Onselen, A., Walsh, C. M., Veldman, F. J., & Brand, C. (2015). The impact of geophagia on the iron status of Black South African Women. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 9(7), 824–829.Google Scholar
  287. Varada, K. R., Harper, R. G., & Wapnir, R. A. (1993). Development of copper intestinal absorption in the rat. Biochemical Medicine and Metabolic Biology, 50(3), 277–283.CrossRefGoogle Scholar
  288. Velde, B. (1995). Composition and mineralogy of clay minerals. In B. Velde (Ed.), Origin and mineralogy of clays (pp. 8–42). New York: Springer.CrossRefGoogle Scholar
  289. Vincent, J. B. (2018). Beneficial effects of chromium (III) and vanadium supplements in diabetes. In D. Bagchi, & N. Sreejayan (Eds.), Nutritional and therapeutic Interventions for diabetes and metabolic syndrome (2nd ed., pp. 365–374). Academic Press.Google Scholar
  290. Walker, C. F., Ezzati, M., & Black, R. E. (2009). Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 63(5), 591.CrossRefGoogle Scholar
  291. Walker, A. R. P., Walker, B. F., Jones, J., Verardi, M., & Walker, C. (1985). Nausea and vomiting and dietary cravings and aversions during pregnancy in South African women. BJOG: An International Journal of Obstetrics & Gynaecology, 92(5), 484–489.CrossRefGoogle Scholar
  292. Walker, A., Walker, B., Sookaria, F., & Cannan, R. (1997). Pica. The Journal of the Royal Society for the Promotion of Health, 117, 280–284.Google Scholar
  293. Watson, J. P. (1976). The composition of mounds of the termite Macrotermes falciger (Gerstacker) on soil derived from granite in three rainfall zones of Rhodesia. European Journal of Soil Science, 27(4), 495–503.CrossRefGoogle Scholar
  294. WHO, World Health Organization. (1996). Trace elements in human nutrition and health. Geneva: World Health Organization. Last accessed January 2019.
  295. WHO, World Health Organization. (2000). Air quality guidelines for Europe, 1–288.Google Scholar
  296. WHO, World Health Organization. (2001). Arsenic in drinking-water. Geneva, World Health Organization. Last accessed January 2019.
  297. WHO, World Health Organization. (2010). Last accessed January 2019.
  298. Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology, 29(7), 1525–1547.CrossRefGoogle Scholar
  299. Wood, R. J. (2000). Assessment of marginal zinc status in humans. The Journal of Nutrition, 130(5), 1350S–1354S.CrossRefGoogle Scholar
  300. Wood, R. J. (2009). Manganese and birth outcome. Nutrition Reviews, 67(7), 416–420.CrossRefGoogle Scholar
  301. Woywodt, A., & Kiss, A. (2002). Geophagia: The history of earth-eating. Journal of the Royal Society of Medicine, 95(3), 143–146.CrossRefGoogle Scholar
  302. Yanai, J., Yanai, J., Noguchi, J., Yamada, H., Sugihara, S., Kilasara, M., et al. (2009). Function of geophagy as supplementation of micronutrients in Tanzania. Soil Science and Plant Nutrition, 55(1), 215–223.CrossRefGoogle Scholar
  303. Young, S. L. (2010). Pica in pregnancy: New ideas about an old condition. Annual Review of Nutrition, 30, 403–422.CrossRefGoogle Scholar
  304. Young, S. L., Goodman, D., Farag, T. H., Ali, S. M., Khatib, M. R., Khalfan, S. S., et al. (2007). Geophagia is not associated with Trichuris or hookworm transmission in Zanzibar, Tanzania. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101(8), 766–772.CrossRefGoogle Scholar
  305. Young, S. L., Khalfan, S. S., Farag, T. H., Kavle, J. A., Ali, S. M., Hajji, H., et al. (2010a). Association of pica with anemia and gastrointestinal distress among pregnant women in Zanzibar, Tanzania. The American Journal of Tropical Medicine and Hygiene, 83(1), 144–151.CrossRefGoogle Scholar
  306. Young, S. L., Sherman, P. W., Lucks, J. B., & Pelto, G. H. (2011). Why on earth? Evaluating hypotheses about the physiological functions of human geophagy. The Quarterly Review of Biology, 86(2), 97–120.CrossRefGoogle Scholar
  307. Young, S. L., Wilson, M. J., Hillier, S., Delbos, E., Ali, S. M., & Stoltzfus, R. J. (2010b). Differences and commonalities in physical, chemical and mineralogical properties of Zanzibari geophagic soils. Journal of Chemical Ecology, 36(1), 129–140.CrossRefGoogle Scholar
  308. Young, S. L., Wilson, M. J., Miller, D., & Hillier, S. (2008). Toward a comprehensive approach to the collection and analysis of pica substances, with emphasis on geophagic materials. PLoS ONE, 3(9), e3147.CrossRefGoogle Scholar
  309. Zierden, M. R., & Valentine, A. M. (2016). Contemplating a role for titanium in organisms. Metallomics, 8(1), 9–16.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.GeoBioTec, Geosciences DepartmentUniversity of AveiroAveiroPortugal
  3. 3.EpiUnit, Public Health InstituteUniversity of PortoPortoPortugal
  4. 4.Environmental and Engineering Geology DivisionGeological Survey of NamibiaWindhoekNamibia

Personalised recommendations