Characteristics of metal contamination in paddy soils from three industrial cities in South Korea

Abstract

Paddy soil contamination is directly linked to human dietary exposure to toxic chemicals via crop consumption. In Korea, rice paddy fields are often located around industrial complexes, a major anthropogenic source of metals. In this study, rice paddy soils were collected from 50 sites in three industrial cities to investigate the contamination characteristics and ecological risk of metals in the soils. The cities studied and their major industries are as follows: Ulsan (petrochemical, nonferrous, automobile, and shipbuilding), Pohang (iron and steel), and Gwangyang (iron and steel, nonmetallic, and petrochemical). Thirteen metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) were analyzed using inductively coupled plasma–optical emission spectrometry (ICP–OES). The mean concentration of Cd (1.98 mg/kg) exceeded the soil quality guideline of Canada (1.4 mg/kg), whereas concentrations of other metals were under the standards of both Korea and Canada. Generally, levels of metal concentrations decreased with increasing distance from industrial complexes. Among the three cities, Pohang showed high concentrations of Zn (142.2 mg/kg), and Ulsan and Gwangyang showed high concentrations of Cr (33.9 mg/kg) and Ba (126.4 mg/kg), respectively. These contamination patterns were influenced by the different major industries of each city, which was clearly demonstrated by the principal component analysis results. Pollution indices suggested that As, Cd, Pb, and Zn were enriched in the paddy soils via anthropogenic activities. Comprehensive potential ecological risk indices were at considerable levels for most sites, especially because of major contributions from As and Cd, which can pose potential ecological threats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.

    Google Scholar 

  2. Akkajit, P., & Tongcumpou, C. (2010). Fractionation of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium. Geoderma, 156(3–4), 126–132. https://doi.org/10.1016/j.geoderma.2010.02.007.

    CAS  Article  Google Scholar 

  3. Alfaro, M. R., Montero, A., Ugarte, O. M., do Nascimento, C. W., de Aguiar Accioly, A. M., Biondi, C. M., et al. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187(1), 4198. https://doi.org/10.1007/s10661-014-4198-3.

    CAS  Article  Google Scholar 

  4. Arslan, S., & Celik, M. (2015). Assessment of the pollutants in soils and surface waters around Gumuskoy silver mine (Kutahya, Turkey). Bulletin of Environmental Contamination and Toxicology, 95(4), 499–506. https://doi.org/10.1007/s00128-015-1613-6.

    CAS  Article  Google Scholar 

  5. ATSDR. (2007). Toxicological profile for lead. Atlanta: Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  6. Bhat, R., & Gómez-López, V. M. (2014). Practical food safety: Contemporary issues and future directions. Chichester: Wiley.

    Google Scholar 

  7. CCME. (2015). Canadian soil quality guidelines for the protection of environmental and human health: Summary table. Canadian Council of Ministers of the Environment. http://st-ts.ccme.ca/en/index.html. Accessed 14 July 2018.

  8. Cheng, S. (2003). Heavy metal pollution in China: Origin, pattern and control. Environmental Science and Pollution Research International, 10(3), 192–198. https://doi.org/10.1065/espr2002.11.141.1.

    CAS  Article  Google Scholar 

  9. Cukrov, N., Franciskovic-Bilinski, S., & Bogner, D. (2014). Metal contamination recorded in the sediment of the semi-closed Bakar Bay (Croatia). Environmental Geochemistry and Health, 36(2), 195–208. https://doi.org/10.1007/s10653-013-9558-3.

    CAS  Article  Google Scholar 

  10. Ding, H., Ji, H., Tang, L., Zhang, A., Guo, X., Li, C., et al. (2016). Heavy metals in the gold mine soil of the upstream area of a metropolitan drinking water source. Environmental Science and Pollution Research International, 23(3), 2831–2847. https://doi.org/10.1007/s11356-015-5479-2.

    CAS  Article  Google Scholar 

  11. Dolenec, T., Serafimovski, T., Tasev, G., Dobnikar, M., Dolenec, M., & Rogan, N. (2007). Major and trace elements in paddy soil contaminated by Pb–Zn mining: A case study of Kocani field, Macedonia. Environmental Geochemistry and Health, 29(1), 21–32. https://doi.org/10.1007/s10653-006-9057-x.

    CAS  Article  Google Scholar 

  12. Ebqa’ai, M., & Ibrahim, B. (2017). Application of multivariate statistical analysis in the pollution and health risk of traffic-related heavy metals. Environmental Geochemistry and Health, 39(6), 1441–1456. https://doi.org/10.1007/s10653-017-9930-9.

    CAS  Article  Google Scholar 

  13. Emsley, J. (2001). Nature’s building blocks: An A–Z guide to the elements. Oxford: Oxford University Press.

    Google Scholar 

  14. EPA. (1984). Guidelines establishing test procedures for the analysis of pollutants. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  15. EPA. (1994). Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, method 200.7, revision 4.4. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  16. EPA. (1996). Acid digestion of sediments, sludges, and soil, method 3050B, SW-846. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  17. Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8.

    CAS  Article  Google Scholar 

  18. Ghoneim, A. M., Al-Zahrani, S. M., El-Maghraby, S. E., & Al-Farraj, A. S. (2014). Heavy metal distribution in Fagonia indica and Cenchrus ciliaris native vegetation plant species. Journal of Food, Agriculture and Environment, 12(3–4), 320–324.

    CAS  Google Scholar 

  19. Gong, M., Wu, L., Bi, X. Y., Ren, L. M., Wang, L., Ma, Z. D., et al. (2010). Assessing heavy-metal contamination and sources by GIS-based approach and multivariate analysis of urban–rural topsoils in Wuhan, central China. Environmental Geochemistry and Health, 32(1), 59–72. https://doi.org/10.1007/s10653-009-9265-2.

    CAS  Article  Google Scholar 

  20. Hakanson, L. (1980). An ecological risk index for aquatic pollution-control—A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  21. Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination. Science of the Total Environment, 312(1–3), 195–219. https://doi.org/10.1016/S0048-9697(03)00223-7.

    CAS  Article  Google Scholar 

  22. Hu, N., Li, Z., Huang, P., & Tao, C. (2006). Distribution and mobility of metals in agricultural soils near a copper smelter in South China. Environmental Geochemistry and Health, 28(1–2), 19–26. https://doi.org/10.1007/s10653-005-9007-z.

    CAS  Article  Google Scholar 

  23. Hu, W., Shao, M. A., Wang, Q. J., Fan, J., & Reichardt, K. (2008). Spatial variability of soil hydraulic properties on a steep slope in the Loess Plateau of China. Scientia Agricola, 65(3), 268–276. https://doi.org/10.1590/S0103-90162008000300007.

    Article  Google Scholar 

  24. Huang, L. M., Deng, C. B., Huang, N., & Huang, X. J. (2013). Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb–Zn mine in Guangxi Zhuang Autonomous Region, China. Environmental Earth Sciences, 68(5), 1331–1348. https://doi.org/10.1007/s12665-012-1831-8.

    CAS  Article  Google Scholar 

  25. Huang, S. S., Liao, Q. L., Hua, M., Wu, X. M., Bi, K. S., Yan, C. Y., et al. (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong District, Jiangsu Province, China. Chemosphere, 67(11), 2148–2155. https://doi.org/10.1016/j.chemosphere.2006.12.043.

    CAS  Article  Google Scholar 

  26. Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., et al. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072.

    CAS  Article  Google Scholar 

  27. Inboonchuay, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S., & Gilkes, R. J. (2016). Amounts and associations of heavy metals in paddy soils of the Khorat Basin, Thailand. Geoderma Regional, 7(2), 120–131. https://doi.org/10.1016/j.geodrs.2016.02.002.

    Article  Google Scholar 

  28. IRRI. (2013). Rice almanac (4th ed.). Amsterdam: International Rice Research Institute, Elsevier.

    Google Scholar 

  29. IUSS Working Group WRB. (2015). World reference base for soil resources 2014, international soil classification system for naming soils and creating legends for soil maps—Update 2015. World soil resources reports no. 106. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).

  30. Jaffar, S. T. A., Luo, F., Ye, R., Younas, H., Hu, X. F., & Chen, L. Z. (2017). The extent of heavy metal pollution and their potential health risk in topsoils of the massively urbanized district of Shanghai. Archives of Environmental Contamination and Toxicology, 73(3), 362–376. https://doi.org/10.1007/s00244-017-0433-6.

    CAS  Article  Google Scholar 

  31. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009.

    CAS  Article  Google Scholar 

  32. JCGM. (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement. JCGM 100:2008: Joint Committee for Guides in Metrology.

  33. Kim, L., Jeon, J. W., Son, J. Y., Park, M. K., Kim, C. S., Jeon, H. J., et al. (2017a). Concentration and distribution of polychlorinated biphenyls in rice paddy soils. Applied Biological Chemistry, 60(2), 191–196. https://doi.org/10.1007/s13765-017-0259-y.

    CAS  Article  Google Scholar 

  34. Kim, L., Jeon, J. W., Son, J. Y., Park, M. K., Kim, C. S., Jeon, H. J., et al. (2017b). Monitoring and risk assessment of polychlorinated biphenyls (PCBs) in agricultural soil from two industrialized areas. Environmental Geochemistry and Health, 39(2), 279–291. https://doi.org/10.1007/s10653-017-9920-y.

    CAS  Article  Google Scholar 

  35. Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 27(2), 185–191. https://doi.org/10.1007/s10653-005-0131-6.

    CAS  Article  Google Scholar 

  36. Lesniewska, B., Krymska, M., Swierad, E., Wiater, J., & Godlewska-Zylkiewicz, B. (2016). An ultrasound-assisted procedure for fast screening of mobile fractions of Cd, Pb and Ni in soil. Insight into method optimization and validation. Environmental Science and Pollution Research, 23(24), 25093–25104. https://doi.org/10.1007/s11356-016-7745-3.

    CAS  Article  Google Scholar 

  37. Mackey, E. A., Christopher, S. J., Lindstrom, R. M., Long, S. E., Marlow, A. F., Murphy, K. E., et al. (2010). Certification of three NIST renewal standard reference materials for element content: SRM 2709a San Joaquin Soil, SRM 2710a Montana Soil I, and SRM 2711a Montana Soil II. National Institute of Standards and Technology Special Publication, 260(172), 1–39.

    Google Scholar 

  38. Mico, C., Peris, M., Recatala, L., & Sanchez, J. (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378(1–2), 13–17. https://doi.org/10.1016/j.scitotenv.2007.01.010.

    CAS  Article  Google Scholar 

  39. Milenkovic, B., Stajic, J. M., Gulan, L., Zeremski, T., & Nikezic, D. (2015). Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environmental Science and Pollution Research International, 22(21), 16732–16741. https://doi.org/10.1007/s11356-015-4869-9.

    CAS  Article  Google Scholar 

  40. MOE. (2013a). The Korean standard test (KST) methods for soils. Sejong: Korean Ministry of Environment.

    Google Scholar 

  41. MOE. (2013b). Soil monitoring network and soil contamination investigations. Korean Ministry of Environment. http://sgis.nier.go.kr/. Accessed 14 July 2018.

  42. MOE. (2014a). PRTR (pollutant release and transfer registers). Korean Ministry of Environment. http://icis.me.go.kr/prtr/main.do. Accessed 14 July 2018.

  43. MOE. (2014b). Soil monitoring network and soil contamination investigations. Korean Ministry of Environment. http://sgis.nier.go.kr/. Accessed 14 July 2018.

  44. MOE. (2015). Soil monitoring network and soil contamination investigations. Korean Ministry of Environment. http://sgis.nier.go.kr/. Accessed 14 July 2018.

  45. MOE. (2018). Soil Environment Conservation Act. Sejong: Korean Ministry of Environment.

    Google Scholar 

  46. Mortvedt, J. J. (1996). Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43(1–3), 55–61. https://doi.org/10.1007/Bf00747683.

    Article  Google Scholar 

  47. Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine river. Geo Journal, 2, 108–118.

    Google Scholar 

  48. Nadimi-Goki, M., Wahsha, M., Bini, C., Kato, Y., Vianello, G., & Antisari, L. V. (2014). Assessment of total soil and plant elements in rice-based production systems in NE Italy. Journal of Geochemical Exploration, 147(Part B), 200–214. https://doi.org/10.1016/j.gexplo.2014.07.008.

    CAS  Article  Google Scholar 

  49. NEPI. (1999). Handbook of environmental science. Seoul: National Environmental Protection Institute.

    Google Scholar 

  50. NIER. (2009). Assessment of soil contamination by new soil contaminant. Incheon: National Institute of Environmental Research.

    Google Scholar 

  51. Payus, C., Talip, A. F. A., & Hsiang, T. W. (2015). Heavy metals accumulation in paddy cultivation area of Kompipinan, Papar District, Sabah. Journal of Sustainability Science and Management, 10(1), 76–86.

    CAS  Google Scholar 

  52. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8–9), 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005.

    CAS  Article  Google Scholar 

  53. Qu, L., Xie, Y. Y., Lu, G. N., Yang, C. F., Zhou, J. N., Yi, X. Y., et al. (2017). Distribution, fractionation, and contamination assessment of heavy metals in paddy soil related to acid mine drainage. Paddy and Water Environment, 15(3), 553–562. https://doi.org/10.1007/s10333-016-0572-9.

    Article  Google Scholar 

  54. Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62(2), 142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x.

    CAS  Article  Google Scholar 

  55. Reck, B. K., Muller, D. B., Rostkowski, K., & Graedel, T. E. (2008). Anthropogenic nickel cycle: Insights into use, trade, and recycling. Environmental Science and Technology, 42(9), 3394–3400. https://doi.org/10.1021/es072108I.

    CAS  Article  Google Scholar 

  56. Sánchez-Bayo, F., Van den Brink, P. J., & Mann, R. M. (2011). Ecological impacts of toxic chemicals. Sharjah: Bentham Science Publishers Ltd.

    Google Scholar 

  57. Shaheen, S. M., & Rinklebe, J. (2015). Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. Environmental Geochemistry and Health, 37(6), 953–967. https://doi.org/10.1007/s10653-015-9718-8.

    CAS  Article  Google Scholar 

  58. Shukurov, N., Pen-Mouratov, S., & Steinberger, Y. (2005). The impact of the Almalyk Industrial Complex on soil chemical and biological properties. Environmental Pollution, 136(2), 331–340. https://doi.org/10.1016/j.envpol.2004.12.007.

    CAS  Article  Google Scholar 

  59. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611–627. https://doi.org/10.1007/s002540050473.

    CAS  Article  Google Scholar 

  60. Taylor, S. R. (1964). Abundance of chemical elements in the continental crust—A new table. Geochimica et Cosmochimica Acta, 28, 1273–1285. https://doi.org/10.1016/0016-7037(64)90129-2.

    CAS  Article  Google Scholar 

  61. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  62. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/Bf02414780.

    Article  Google Scholar 

  63. Van-Camp, L., Bujjarabal, B., Gentile, A.-R., Jones, R. J. A., Montanarella, L., & Olazabal, C., et al. (2004). Reports of the technical working groups established under the thematic strategy for soil protection. Luxembourg: EUR 21319 EN/1, Office for Official Publications of the European Communities.

  64. Yingran, L., Hongming, Y., Yu, S., & Juan, C. (2017). Novel assessment method of heavy metal pollution in surface water. Environmental Engineering Research, 22(1), 31–39. https://doi.org/10.4491/eer.2016.015.

    Article  Google Scholar 

  65. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91. https://doi.org/10.1016/j.envpol.2010.09.019.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2018 Research Fund (1.180015.01) of the Ulsan National Institute of Science and Technology (UNIST), Korea Ministry of Environment (KMOE) as “Chemical Accident Prevention Technology Development Project (2017001960001),” and Korea Institute of Energy Technology Evaluation and Planning (KETEP) through “Human Resources Program in Energy Technology” (No. 20164030201010) funded by the Ministry of Trade, Industry and Energy.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sung-Eun Lee or Sung-Deuk Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1097 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, I., Park, M., Cho, H. et al. Characteristics of metal contamination in paddy soils from three industrial cities in South Korea. Environ Geochem Health 41, 1895–1907 (2019). https://doi.org/10.1007/s10653-019-00246-1

Download citation

Keywords

  • Soil pollution
  • Agricultural soil
  • Ulsan
  • Pohang
  • Gwangyang