Skip to main content
Log in

Discrimination of geographical origin of hop (Humulus lupulus L.) using geochemical elements combined with statistical analysis

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Beer is a popular alcoholic beverage worldwide, traditionally made from water, barley and hop (Humulus lupulus L.) strobili. The strobili contain lupulin glands whose components (mostly bitter acids and polyphenols) confer unique and locally different flavours to beer types. It is therefore relevant for brewers and consumers to precisely know the geographical origin of hop plants used for high-quality beer. Hop plants belonging to the variety Hallertau Perle, grown in two locations, Cavalese and Imèr, of the Trentino Region (Italy) were analysed to establish a direct relationship between the chemical elements detected in soil and in plant parts. Chemical elements were determined by X-ray fluorescence and inductively coupled plasma mass spectrometry in soil, leaf and strobili samples from Cavalese and Imèr. The data from the two areas were compared by a nonparametric test (Mann–Whitney) and multivariate statistics (principal component analysis and partial least squares discriminant analysis). The geochemical characterization and the statistical analyses showed different concentrations of major and trace elements in soil and plant parts from the two areas. A reliable correlation could be established between some elements in soil and strobili samples, that is Nb, Fe, Rb and Zr for Cavalese and Mg, Ni, Zn and Zr for Imèr. These elements could therefore be used as geochemical fingerprints to identify the geographical origin of strobili from the two study areas, an approach useful to verify the origin of hop plants for the production of high-quality beer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas, H., Maria Michail, M., Cifelli, F., Mattei, M., Gianolla, P., Lustrino, M., et al. (2018). Emplacement modes of the Ladinian plutonic rocks of the Dolomites: Insights from anisotropy of magnetic susceptibility. Journal of Structural Geology, 113, 42–61.

    Article  Google Scholar 

  • Alcázar, Á., Jurado, J. M., Palacios-Morillo, A., de Pablos, F., & Martín, M. J. (2012). Recognition of the geographical origin of beer based on support vector machines applied to chemical descriptors. Food Control, 23, 258–262.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils. London: Blackie Academic & Professional.

    Book  Google Scholar 

  • Avanzini, M., Bargossi, G.M., Borsato, A., & Selli, L. (2010). Note illustrative della carta geologica d’Italia alla scala 1:50.000 foglio 060 Trento. Ispra geological survey of Italy and provincia autonoma di Trento.

  • Barker, A. L., & Pilbeam, D. J. (2007). Handbook of plant nutrition (1st ed.). Boca Raton: Taylor & Francis Group, LLC.

    Google Scholar 

  • Barker, A. L., Pilbeam, D. J. (2015). Handbook of plant nutrition (2nd ed.). Boca Raton: Taylor & Francis Group, LLC.

    Book  Google Scholar 

  • Bevin, C. J., Dambergs, R. G., Fergusson, A. J., & Cozzolino, D. (2008). Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta, 621, 19.

    Article  CAS  Google Scholar 

  • Bong, Y. S., Ryu, J. S., Choi, S. H., La, M. R., & Lee, K. S. (2016). Investigation of the geographical provenance of the beer available in South Korea using multielements and isotopes. Food Control, 60, 378–381.

    Article  CAS  Google Scholar 

  • Carta geologico strutturale del trentino. (2018). Protezione civile, Provincia autonoma di Trento, Italy. http://www.protezionecivile.tn.it/territorio/Cartografia/Cartografiageologica/-Cartageologicostrutturale/pagina13.html. Accessed 9 May, 2018.

  • Carter, J. F., Yates, H. S. A., & Tinggi, U. (2015). A global survey of the stable isotope and chemical compositions of bottled and canned beers as a guide to authenticity. Science & Justice, 55, 18–26.

    Article  CAS  Google Scholar 

  • Christoph, N. A., Rossmann, C., Schlicht, S., & Voerkelius, S. (2006). Wine authentication using stable isotope ratio analysis: Significance of geographic origin, climate, and viticultural parameters (pp. 166–179). Authentication of Food and Wine: American Chemical Society.

    Google Scholar 

  • De la Guardia, M., & Garrigues, S. (2015). Handbook of mineral elements in food (1st ed.). Hoboken: Wiley.

    Google Scholar 

  • De Vivo, B., Bove, M. A., Lima, A., Albanese, S., Cicchella, D., Grezzi, G., et al. (2009). Atlante Geochimico Ambientale d’Italia. Roma: Aracne Editrice.

    Google Scholar 

  • De Vivo, B., Lima, A., & Siegel, F. (2004). Geochimica Ambientale, Metalli potenzialmente Tossici. Napoli: Liguori editore.

    Google Scholar 

  • Gama, E. M., Clésia, C., Nascentes, C. C., Matos, R. P., de Gabrielle, C., Rodrigues, G. C., et al. (2017). A simple method for the multi-elemental analysis of beer using total reflection X-ray fluorescence. Talanta, 174, 274–278.

    Article  CAS  Google Scholar 

  • Gonzalvez, A., & de la Guardia, M. (2013). Mineral profile. In M. de la Guardia & A. Gonzalvez (Eds.), Food protected designation of origin, methodologies and applications (1st ed., pp. 51–76). Valencia: Elsevier.

    Chapter  Google Scholar 

  • Guo, W., Nazimc, H., Liang, Z., & Yang, D. (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal, 4, 83–91.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kavalier, A. R., Litt, A., Ma, C., Pitra, N. J., Coles, M. C., Kennelly, E. J., et al. (2011). Phytochemical and morphological characterization of hop (Humulus lupulus L.) cones over five developmental stages using high performance liquid chromatography coupled to time-of-flight mass spectrometry, ultrahigh performance liquid chromatography photodiode array detection, and light microscopy techniques. Journal of Agricultural and Food Chemistry, 59, 4783–4793.

    Article  CAS  Google Scholar 

  • Kodoma, H. (2012). Phyllosilicates. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences-properties and processes (2nd ed., pp. 635–684). Boca Raton: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Korbecka-Glinka, G., Skomra, U., & Olszak-Przybys, H. (2016). Cultivar identification in dry hop cones and pellets using microsatellite loci. European Food Research and Technology, 242, 1599–1605.

    Article  CAS  Google Scholar 

  • Kuballa, T., Brunner, T. S., Thongpanchang, T., Walch, S. G., & Lachenmeier, D. W. (2018). Application of NMR for authentication of honey, beer and spices. Current Opinion in Food Science, 19, 57–62.

    Article  Google Scholar 

  • Kӓmpf, N., Scheinost, A. C., & Schulze, D. (2012). Oxide minerals in soils. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences-properties and processes (2nd ed., pp. 685–718). Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Leonardi, M., Skomra, U., Agacka, M., Stochmal, A., Ambryszewska, K. E., Oleszek, W., et al. (2013). Characterisation of four popular Polish hop cultivars. International Journal of Food Science & Technology, 48, 1770–1774.

    Article  CAS  Google Scholar 

  • Machado, J. C., Faria, M. A., Ferreira, I. M., Ricardo, N. M. J., Páscoa, R. N., & Lopes, J. A. (2018). Varietal discrimination of hop pellets by near and mid infrared spectroscopy. Talanta, 180, 69–75.

    Article  CAS  Google Scholar 

  • Mahmood, N., Petraco, N., & He, Y. (2012). Elemental fingerprint profile of beer samples constructed using 14 elements determined by inductively coupled plasma–mass spectrometry (ICP-MS): Multivariation analysis and potential application to forensic sample comparison. Analytical and Bioanalytical Chemistry, 402, 861–869.

    Article  CAS  Google Scholar 

  • Mannina, L., Marini, F., Antiochia, R., Cesa, S., Magrì, A., Capitani, D., et al. (2016). Tracing the origin of beer samples by NMR and chemometrics: Trappist beers as a case study. Electrophoresis, 37, 2710–2719.

    Article  CAS  Google Scholar 

  • Mantrov, V. (2014). EU Law on indications of geographical origin theory and practice. Berlin: Springer.

    Google Scholar 

  • Montanari, L., Mayer, H., Marconi, O., & Fantozzi, P. (2009). Minerals in beer. Preedy VR beer in health and disease prevention (1st ed., pp. 359–365). Elsevier, London: Academic Press.

    Chapter  Google Scholar 

  • Navarro, J. M., Matinez, V., Cerda, A., & Botella, M. A. (2000). Effect of salinity 9 calcium interaction on cation balance in melon plants grown under two regimes of orthophosphate. Journal of Plant Nutrition, 21, 991–1006.

    Article  Google Scholar 

  • Ocvirk, M., Grdadolnik, J., & Košir, I. J. (2016). Determination of the botanical origin of hops (Humulus lupulus L.) using different analytical techniques in combination with statistical methods. Journal of the Institute of Brewing, 122, 452–461.

    Article  CAS  Google Scholar 

  • Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., et al. (2017a). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215–224.

    Article  CAS  Google Scholar 

  • Oladokun, O., James, S., Cowley, T., Dehrmann, F., Smart, K., Hort, J., et al. (2017b). Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chemistry, 230, 215–224.

    Article  CAS  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., & Vaccaro, C. (2017). Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. Glera. Chemie der Erde. https://doi.org/10.1016/j.chemer.2017.01.003.

    Article  Google Scholar 

  • Pepi, S., Sardella, A., Bonazza, A., & Vaccaro, C. (2018). Geochemical caper fingerprints as a tool for geographical origin identification. Environmental Geochemistry and Health, 10, 15–20. https://doi.org/10.1007/s10653-017-0063-y.

    Article  CAS  Google Scholar 

  • Pepi, S., & Vaccaro, C. (2017). Geochemical fingerprints of ‘‘Prosecco’’ wine based on major and trace elements. Environmental Geochemistry and Health, 40, 833–847.

    Article  CAS  Google Scholar 

  • Pohl, P. (2008). Determination and fractionation of metals in beer: A review. Food Addit Contam Part A, 25, 693–703.

    Article  CAS  Google Scholar 

  • Roberts, T. R. (2016). Hops. In C. W. Bamforth (Ed.), Brewing materials and processes a practical approach to beer excellence (1st ed., pp. 47–75). London: Academic Press, Elsevier.

    Chapter  Google Scholar 

  • Rodrigo, S., Young, S. D., Talaverano, M. I., & Broadley, M. R. (2017). The influence of style and origin on mineral composition of beers retailing in the UK. European Food Research and Technology, 243, 931–939.

    Article  CAS  Google Scholar 

  • Sakellari, A., Karavoltsos, S., Plavšić, M., Bempi, E., Papantonopoulou, G., Dassenakis, M., et al. (2016). Copper complexing properties, trace metal content and organic matter physico-chemical characterization of Greek beers. Microchemical Journal, 135, 66–73.

    Article  CAS  Google Scholar 

  • Shahid, M., Ferrand, E., Schreck, E., & Dumat, C. (2013). Behavior and impact of zirconium in the soil-plant system: Plant uptake and phytotoxicity. Reviews of Environmental Contamination and Toxicology, 221, 107–127.

    CAS  Google Scholar 

  • Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., & Rahman, A. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698.

    Article  CAS  Google Scholar 

  • Sims, J. L., Scholtzhauer, W. S., & Grove, J. H. (1995). Soluble calcium fertilizer effects on early growth and nutrition of burley tobacco. Journal of Plant Nutrition, 18, 911–921.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed., p. 53). London: Academic Press.

    Google Scholar 

  • Stevens, J. F., Taylora, A. W., Nickerson, G. B., Ivancic, M., Henning, J., Haunold, A., et al. (2000). Prenylflavonoid variation in Humulus lupulus: Distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry, 53, 759–775.

    Article  CAS  Google Scholar 

  • Van Couter, Y., & d’Ath, F. (2016). Protecting the origin of foodstuffs in the European Union. Indications of origin and trademarks as intellectual property tools. EFFL, 11, 290–308.

    Google Scholar 

Download references

Acknowledgements

The authors owe thanks to Mr. Fabio Simoni and Mr. Nicola Simion (BioNoć Brewery, Mezzano di Primiero, Trento, Italy) and Mr. Stefano Gilmozzi (Fiemme Brewery, Daiano, Trento, Italy) for allowing to collect soil, leaf and strobili samples. The authors also wish to thank Mr. Renzo Tassinari for technical advice and Mr. Michele Lunelli for help in sample collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pepi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table A1.

Classification of soil samples from Cavalese and Imèr based on granulometric analyses according to the soil texture triangle of the United States Department of Agriculture (XLSX 22 kb)

Supplementary Table B1.

Pearson correlation coefficients of concentrations of major and trace elements in soil samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 28 kb)

Supplementary Table B2.

Pearson correlation coefficients of concentrations of major and trace elements in leaf samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 25 kb)

Supplementary Table B3.

Pearson correlation coefficients of concentrations of major and trace elements in strobili samples from Cavalese and Imèr. Values in bold are statistically significant with p-value < 0.05 (XLSX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepi, S., Chicca, M., Telloli, C. et al. Discrimination of geographical origin of hop (Humulus lupulus L.) using geochemical elements combined with statistical analysis. Environ Geochem Health 41, 1559–1576 (2019). https://doi.org/10.1007/s10653-018-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0232-7

Keywords

Navigation