Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents

Abstract

Tin, Cu, Zn, Cd, Pb, Ag and Hg concentrations were measured in waters, sediments and three ubiquitous sedentary molluscs: the oyster, Saccostrea glomerata, a rocky intertidal gastropod, Austrocochlea porcata, and a sediment-dwelling gastropod, Batillaria australis, at 12 locations along the far south coast of NSW, Australia, from Batemans Bay to Twofold Bay during 2009. Metal concentrations in water for Sn, Cd, Ag and Hg were below detection limits (< 0.005 μg/L). Measurable water metal concentrations were Cu: 0.01–0.08 μg/L, Zn: 0.005–0.11 μg/L and Pb: 0.005–0.06 μg/L. Mean metal concentration in sediments were Sn < 0.01–2 μg/g, Cu < 0.01–605 μg/g, Zn 23–765 μg/g, Cd < 0.01–0.5 μg/g, Pb < 0.01–0.3 μg/g, Ag < 0.01–0.9 μg/g and Hg < 0.01–2.3 μg/g. Several locations exceeded the Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (Australian and New Zealand guidelines for fresh and marine water quality 2000) low and high interim sediment quality guidelines’ levels for Cu, Zn, Cd and Hg. Some sites had measurable Sn concentrations, but these were all well below the levels of tributyltin known to cause harm to marine animals. Elevated metal concentrations are likely to be from the use of antifoulants on boats, historical mining activities and agriculture in the catchments of estuaries. All molluscs had no measurable concentrations of Sn (< 0.01 μg/g) and low mean Ag (< 0.01–1.5 μg/g) and Hg (< 0.01–0.5 μg/g) concentrations. Mean Cu (24–1516 μg/g), Zn (45–4644 μg/g), Cd (0.05–5μg/g) and Pb (0.05–1.1 μg/g) in oysters were close to background concentrations. Oysters have Cd and Pb concentrations well below the Australian Food Standards Code (2002).] There were no significant correlations between metal concentrations in sediments and in organisms within locations, and no relationship with levels of boating activity and suspected antifouling contamination. Although not pristine, the low levels of metal contamination in sediments and molluscs in comparison with known metal-contaminated areas indicate that this region is not grossly contaminated with metals and suitable for the development of mariculture.]

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. ANFA. (2002). Australian food standards code. Melbourne: Australia New Zealand Food Authority.

    Google Scholar 

  2. ANZECC/ARMCANZ. (2000). Australian and New Zealand guidelines for fresh and marine water quality. Melbourne: Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

    Google Scholar 

  3. Apte, S. C., Batley, G. E., Szymczak, R., Rendell, P. S., Lee, R., & Waite, T. D. (1998). Baseline metal concentrations in New South Wales coastal waters. Marine & Freshwater Research, 49, 201–214.

    Article  Google Scholar 

  4. Baldwin, S., Deaker, M., & Maher, W. (1994). Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst, 119, 1701–1704.

    CAS  Article  Google Scholar 

  5. Bao, V. W., Leung, K. M., Kwok, K. W., Zhang, A. Q., & Lui, G. C. (2008). Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Marine Pollution Bulletin, 57, 616–623.

    CAS  Article  Google Scholar 

  6. Batley, G. E., Brockbank, C. I., & Scammel, M. S. (1992). The impact of banning of tributyltin based anti-fouling paints on the Sydney rock oyster, Saccostrea commercialis. Science of the Total Environment, 122, 301–314.

    CAS  Article  Google Scholar 

  7. Bega Valley and Eurobodalla Shire Council. (2000). Wallaga lake estuary management plan (no. 5, pp. 1–57).

  8. Bighiu, M. A., Eriksson-Wiklundi, A.-K., & Eklundi, B. (2017). Biofouling of leisure boats as a source of metal pollution. Environmental Science and Pollution Research, 24, 997–1006.

    CAS  Article  Google Scholar 

  9. Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., & Zaman, N. (2000). Modelling of Antifouling Biocides in UK Estuaries. Marine Pollution Bulletin, 40, 898–905.

    CAS  Article  Google Scholar 

  10. Boyle, E. A., Edmond, J. M., & Sholkovitz, E. R. (1977). The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41, 1313–1324.

    CAS  Article  Google Scholar 

  11. Chandrika, V., Tarit, C., & Kunal, G. (1997). Complexation of humic substances with oxides of iron and aluminium. Soil Science, 162, 28–34.

    Article  Google Scholar 

  12. Clarke, K. R., & Warwick, R. M. (1994). Changes in marine communities: An approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.

    Google Scholar 

  13. Comber, S. D. W., Franklin, G., Gardner, M. J., Watts, C. D., Boxall, A. B. A., & Howcroft, J. (2002). Partitioning of marine antifoulants in the marine Environment. The Science of the Total Environment, 286, 61–71.

    CAS  Article  Google Scholar 

  14. Comber, S. D. W., Gunn, A. M., & Whalley, C. (1995). Comparison of the partitioning of trace metals in the Humber and Mersey estuaries. Marine Pollution Bulletin, 30, 851–860.

    CAS  Article  Google Scholar 

  15. DIST/DIRD. (2017). Regional jobs and investment packages. South Coast region of New South Wales local Investment plan. Department of Industry, Innovation and Science-Department of Infrastructure and regional development, May 2017, pp. 1–36.

  16. Douzva, B., Lhotka, M., Grygar, T., Machovic, V., & Herzogova, L. (2011). Insitu co-adsorption of arsenic and iron/manganese ions on raw clays. Applied Clay Science, 54, 166–171.

    Article  Google Scholar 

  17. Edge, K. J., Daffon, K. A., Simpson, S. L., Ringwood, A. H., & Johnston, E. L. (2015). Resuspended contaminated sediments cause sub-lethal stress to oysters: a biomarker differentiates TSS and contaminant effects. Environmental Toxicology and Chemistry, 34, 1345–1353.

    CAS  Article  Google Scholar 

  18. Fabris, G. J., & Monahan, C. A. (1995). Characterisation of toxicants in Port Phillip Bay: Metals. Technical Report No 18, Commonwealth Scientific and Industrial Research Organisation INRE Port Phillip Bay Environmental Study, Melbourne, p. 48.

  19. Fauser, P., Sanderson, H., Hedegaard, R. V., Sloth, J. J., Larsen, M. M., Krongaard, T., et al. (2013). Occurrence and sorption properties of arsenicals in marine sediments. Environmental Monitoring and Assessment, 185, 4679–4691.

    CAS  Article  Google Scholar 

  20. Gay, D., & Maher, W. A. (2003). Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium namum and their potential use as a biomonitor of trace metals. Water Research, 37, 2173–2185.

    CAS  Article  Google Scholar 

  21. Georges, A., (2002). Biometry: Statistics for ecology and natural resource management. Workbook 1: Introduction to SAS for windows (version 8). Flexible Delivery Development Unit, Centre for the Enhancement of Learning, Teaching and Scholarship (CELTS), University of Canberra, ACT 2601, Australia (IBSN: 1 740880269).

  22. Geosciences Australia. (2000). Lachlan fold belt project (19912000). Viewed 17 January, 2010. http://www.ga.gov.au/minerals/research/archive/lachlan_fold_belt.jsp#1-250000.

  23. Gibson, C. P., & Wilson, S. P. (2003). ‘Imposex” still evident in eastern Australia 10 years after tributyltin restrictions. Marine Environmental Research, 55, 101–112.

    CAS  Article  Google Scholar 

  24. Guardiola, F. A., Cuesta, A., Meseguer, J., & Esteban, M. A. (2012). Risks of using antifouling biocides in aquaculture. International Journal of Molecular Science, 13, 1541–1560.

    CAS  Article  Google Scholar 

  25. Guo, T., DeLaune, R. D., & Patrick, W. H., Jr. (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3), 305–316.

    CAS  Article  Google Scholar 

  26. Hatje, V., Apte, S. C., Hales, L. T., & Birch, G. F. (2003). Dissolved trace metal distributions in Port Jackson estuary (Sydney Harbour), Australia. Marine Pollution Bulletin, 46, 719–730.

    CAS  Article  Google Scholar 

  27. Haynes, D., & Loong, D. (2002). Antifoulant (butyltin and copper) concentrations in sediments from the Great Barrier Reef world heritage area, Australia. Environmental Pollution, 120, 391–396.

    CAS  Article  Google Scholar 

  28. Huang, G., Bai, Z., Dai, S., & Xie, Q. (2004). Accumulation and toxic effect of organometallic compounds on algae. Applied Organometallic Chemistry, 7, 373–380.

    Article  Google Scholar 

  29. IMO (International Maritime Organization). (2001). International convention on the control of harmful anti-fouling systems on ships, 2001. In International conference on the control of harmful anti-fouling systems for ships.

  30. Jardin, T., & Bunn, S. (2010). Northern Australia, whither the mercury? Marine & Freshwater Research, 61, 451–463.

    Article  Google Scholar 

  31. Johnston, E. L., Marizinelli, E. M., Wood, C. A., Speranza, D., & Bishop, J. D. D. (2011). Bearing the burden of boat harbours: Heavy contaminant and fouling loads in a native habitat-forming alga. Marine Pollution Bulletin, 62, 2137–2144.

    CAS  Article  Google Scholar 

  32. Johnston, E., & Roberts, D. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157, 1745–1752.

    CAS  Article  Google Scholar 

  33. Jones, B. G., Killian, H. E., Chenhall, B. E., & Sloss, C. R. (2003). Anthropogenic effects in a coastal lagoon: Geochemical characterisation of Burrill Lake, NSW, Australia. Journal of Coastal Research, 19, 621–632.

    Google Scholar 

  34. Jones, D. E., & Turner, A. (2010). Bioaccessibility and mobilisation of copper and zinc in estuarine sediment contaminated by antifouling paint particles. Estuarine, Coastal and Shelf Science, 8, 399–404.

    Article  Google Scholar 

  35. Koutsaftis, A., & Aoyama, I. (2006). The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environmental Toxicology, 21, 432–439.

    CAS  Article  Google Scholar 

  36. Liston, P., & Maher, W. A. (1986). Trace metal export in urban runoff and its biological significance. Bulletin of Environmental Contamination and Toxicology, 36, 900–905.

    CAS  Article  Google Scholar 

  37. Lobel, P. B., Mogie, P., Wright, D. A., & Wu, B. L. (1982). Gonadal and non-gonadal zinc concentrations in mussels. Marine Pollution Bulletin, 13, 320–332.

    CAS  Article  Google Scholar 

  38. Lobel, P. B., & Wright, D. A. (1982). Metal accumulation in four molluscs. Marine Pollution Bulletin, 13, 170–174.

    CAS  Article  Google Scholar 

  39. Mackey, N. J., Williams, R. J., Kacprzac, J. L., Kazacos, M. N., Collins, A. J., & Auty, E. H. (1975). Heavy metals in cultivated oysters (Crassostrea commercialis = Saccostrea cucullata) from the estuaries of New South Wales. Australian Journal of Marine and Freshwater Research, 26, 31–46.

    Article  Google Scholar 

  40. Maher, W., Forstner, S., Krikowa, F., Snitch, P., Chapple, G., & Craig, P. (2001). Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS. Journal of Analytical Atomic Spectrometry, 22, 361–369.

    CAS  Google Scholar 

  41. Maher, W., Krikowa, F., Kirby, J., Townsend, A. T., & Snitch, P. (2003). Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications. Australian Journal of Chemistry, 56, 103–116.

    CAS  Article  Google Scholar 

  42. Maher, W. A., Maher, N., Taylor, A., Krikowa, F., Ubrihien, R., & Milac, K. M. (2016). The use of the marine gastropod, Cellana tramoserica as a biomonitor of metal contamination in near shore Environments. Environmental Monitoring and Assessment, 188, 391–406.

    CAS  Article  Google Scholar 

  43. Matthiessen, P., & Gibbs, P. E. (1998). Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environmental Toxicology and Chemistry, 17, 37–43.

    CAS  Article  Google Scholar 

  44. Matthiessen, P., Reed, J., & Johnson, M. (1999). Sources and potential effects of copper and zinc concentrations in the estuarine waters of Essex and Suffolk, United Kingdom. Marine Pollution Bulletin, 38, 908–920.

    CAS  Article  Google Scholar 

  45. McAllister, T. L., Overton, M. F., & Brill, E. D., Jr. (1996). Cumulative impact of marinas on estuarine water quality. Environmental Management, 20, 385–396.

    CAS  Article  Google Scholar 

  46. McCall, P. L., & Tevesz, M. J. S. (Eds.). (1982). Chapter 3. The effects of Benthos on physical properties of freshwater sediments. In Animal-sediment relationsThe biogenic alteration of sediments. Topics in Geobiology (Vol. 100, pp. 105–176). New York: Springer.

  47. McCready, S., Birch, G. F., & Long, E. R. (2006). Metallic and organic contaminants in sediments of Sidney Harbour, Australia and vicinity: A chemical dataset for evaluating sediment quality guidelines. Environmental International, 32, 455–465.

    Article  Google Scholar 

  48. McPherson, T. N., Burian, S. J., Stenstrom, M. K., Turin, H. J., Brown, M. J., & Suffet, I. H. (2005). Trace metal pollutant load in urban runoff from Southern California watershed. Journal of Environmental Engineering, 131, 1073–1080.

    CAS  Article  Google Scholar 

  49. Meadows, P. S., & Tait, J. (1989). Modification of sediment permeability and shear strength by two burrowing invertebrates. Marine Biology, 101, 75–82.

    Article  Google Scholar 

  50. Mikac, K. M., Maher, W. A., & Jones, A. R. (2007). Do physicochemical sediment variables and their soft sediment macrofauna differ among micro size coastal lagoons with forested and urban catchments? Estuarine and Coastal Shelf Science, 72, 308–318.

    Article  Google Scholar 

  51. Munksgaard, N. C., & Parry, D. L. (2001). Trace metals, arsenic and lead isotopes in dissolved and particulate phases of North Australian coastal and estuarine seawater. Marine Chemistry, 75, 165–184.

    CAS  Article  Google Scholar 

  52. Natural Heritage Trust. (2004). Tributyltin (TBT) analysis protocol development and current contamination assessment. A report from Natural Heritage Trust (Coasts and Clean Seas) Project No 25425 December 2004, Canberra.

  53. Oades, J. M. (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35–70.

    CAS  Article  Google Scholar 

  54. Oberdorster, E., & McClellan-Green, P. (2002). Mechanisms of imposex induction in the mud snail, Ilyanassa obsoleta: TBT as a neurotoxin and aromatase inhibitor. Marine Environmental Research, 54, 715–718.

    CAS  Article  Google Scholar 

  55. Packham, D., Tapper, N., Griepsma, D., Friedli, H., Hellings, J., & Harris, S. (2009). Release of mercury in the Australian environment by burning: A preliminary investigation of biomatter and soils. Air Quality and Climate Change, 43, 24–27.

    Google Scholar 

  56. Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor metal pollution in marine and estuarine environments-a review. Environmental Pollution, 13, 281–311.

    CAS  Article  Google Scholar 

  57. Pipe, R. K., Coles, A., Carissan, F. M. M., & Ramanathan, K. (1999). Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquatic Toxicology, 46, 43–54.

    CAS  Article  Google Scholar 

  58. Rhoads, D. C., & Boyer, L. F. (1982). The effects of marine benthos on physical properties of sediments: A successional perspective. In P. L. McCall & M. J. S. Tevesz (Eds.), Animal-sediment relations. New York: Plenum Press.

    Google Scholar 

  59. Robinson, W. A., Maher, W. A., Krikowa, F., Nell, J. A., & Hand, R. (2005). The use of the oyster Saccostrea glomerata as a biomonitor of metal contamination: Intra-sample, local scale and temporal variability and its implications for biomonitoring. Journal of Environmental Monitoring, 7, 208–223.

    CAS  Article  Google Scholar 

  60. Sanudo-Wilhelmy, S. A., & Flegalt, A. R. (1992). Anthropogenic silver in the Southern California Bight: A new tracer of sewage in coastal waters. Environmental Science and Technology, 26, 2147–2151.

    CAS  Article  Google Scholar 

  61. Scanes, P. R., & Roach, A. C. (1999). Determining natural ‘background’ concentrations of metals in oysters from New South Wales, Australia. Environmental Pollution, 105, 437–446.

    CAS  Article  Google Scholar 

  62. Showalter, S., & Savarese, J. (2004). Restrictions on the use of marine antifouling paints containing tributyltin and copper. CA: California Sea Grant Extension Program.

    Google Scholar 

  63. Sim, V. X. Y., Dafforn, K. A., Simpson, S. L., Kelaher, B. P., & Johnston, E. L. (2015). Sediment contaminants and infauna associated with recreational boating structures in a multi-use marine park. PLoS ONE, 10, 1–15.

    Google Scholar 

  64. Singh, N., & Turner, A. (2009). Metals in antifouling paint particles and their heterogeneous contamination of coastal sediments. Marine Pollution Bulletin, 58, 559–564.

    CAS  Article  Google Scholar 

  65. Smith, P. J., & McVeagh, M. (1991). Widespread organotin pollution in New Zealand coastal waters as indicated by imposex in dogwhelks. Marine Pollution Bulletin, 22, 409–413.

    CAS  Article  Google Scholar 

  66. Spooner, D., Maher, W., & Otway, N. (2003). Metal concentrations in sediments and oysters of Botany Bay, Australia. Archives of Environmental Contamination and Toxicology, 45, 92–101.

    CAS  Article  Google Scholar 

  67. Tanabe, S. (1999). Butyltin contamination in marine mammals: A Review. Marine Pollution Bulletin, 39, 62–72.

    CAS  Article  Google Scholar 

  68. Taylor, A., & Maher, W. (2003). The use of two marine gastropods, Austrocochlea constricta and Bembicium auratum as biomonitors of zinc, cadmium and copper exposure: Effects of mass, within and between site variability and net accumulation relative to environmental exposure. Journal of Coastal Research Progress Series, 19, 541–549.

    Google Scholar 

  69. Telford, K., Maher, W., Krikowa, F., & Foster, S. (2008). Measurement of total antimony and antimony species in mine contaminated soils by ICPMS and HPLC-ICPMS. Journal of Environmental Monitoring, 10, 136–140.

    CAS  Article  Google Scholar 

  70. Tessier, A., & Campbell, P. G. C. (1987). Partitioning of trace metals in sediments: Relationships with bioavailability. In R. L. Thomas, R. Evans, A. L. Hamilton, M. Munawar, T. B. Reynoldson, & M. H. Sadar (Eds.), Ecological effects of in situ sediment contaminants. Developments in hydrobiology (Vol. 39). Dordrecht: Springer.

    Google Scholar 

  71. Tombacz, E. (2004). The role of reactive surface sites and complexation by humic acids in the interaction of clay minerals and iron oxide particles. Organic Geochemistry, 35, 257.

    CAS  Article  Google Scholar 

  72. Turner, A. (1996). Trace-metal partitioning in estuaries: Importance of salinity and particle concentration. Marine Chemistry, 54, 27–39.

    CAS  Article  Google Scholar 

  73. Turner, A. (2010). Marine pollution from antifouling paint particles. Marine Pollution Bulletin, 60, 159–171.

    CAS  Article  Google Scholar 

  74. Turner, A., Millward, G. E., Schuchardt, B., Schirmer, M., & Prange, A. (1992). Trace metal distribution coefficients in the Weser estuary (Germany). Continental Shelf Research, 12, 1277–1292.

    Article  Google Scholar 

  75. Ubrihien, R., Taylor, A. M., & Maher, W. A. (2016). Bioaccumulation, oxidative stress and cellular damage in the intertidal gastropod Bembicium namum exposed to a metal contamination gradient. Marine & Freshwater Research, 67, 1–9.

    Article  Google Scholar 

  76. Underwood, A. C., & Chapman, M. G. (1995). Coastal marine ecology of temperate, Australia (pp. 1–341). Kensington: UNSW Press.

    Google Scholar 

  77. Vogel, C., Kruger, O., Herzel, H., & Adam, C. (2016). Chemical state of mercury and selenium in sewage sludge ash-based P fertilizers. Journal of Hazardous Materials, 313, 179–184.

    CAS  Article  Google Scholar 

  78. Voulvoulis, N., Scrimshaw, N. D., & Lester, J. N. (2002). Comparative environmental assessment of biocides used in antifouling paints. Chemosphere, 47, 789–795.

    CAS  Article  Google Scholar 

  79. Walsh, K., Dunstan, R. H., Murdoch, R. N., Conroy, B. A., Roberts, T. K., & Lake, P. (1994). Bioaccumulation of pollutants and changes in population parameters in the gastropod mollusk Austrocochlea constricta. Archives of Environmental Contamination and Toxicology, 26, 367–373.

    CAS  Article  Google Scholar 

  80. Wang, W., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. The Science of the Total Environment, 237(238), 459–472.

    Article  Google Scholar 

  81. Wang, X., Wang, J., & Zhang, J. (2012). Comparisons of three methods for organic and inorganic carbon in calcareous soils of Northwestern China. PLoS ONE, 7, e44334.

    CAS  Article  Google Scholar 

  82. Waring, J., Maher, W. A., & Krikowa, F. (2006). Trace metal bioaccumulation in eight common Australian polychaeta. Journal of Environmental Monitoring, 8, 1149–1157.

    CAS  Article  Google Scholar 

  83. Warnken, J., Dunn, R. J. K., & Teasdale, P. R. (2004). Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Marine Pollution Bulletin, 49, 833–843.

    CAS  Article  Google Scholar 

  84. Wood, M. A. (1983). Available copper ligands and the apparent bioavailability of copper to natural phytoplankton assemblages. Science of the Total Environment, 28, 51–64.

    CAS  Article  Google Scholar 

  85. Zhuang, J., & Yu, G.-R. (2002). Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere, 49, 619–628.

    CAS  Article  Google Scholar 

  86. Zwolsman, J. J. G., Eck, B. T. M., & Van der Weijden, C. H. (1997). Geochemistry of dissolved metals in the Scheldt estuary, southwest Netherlands: Impact of seasonal variability. Geochimica et Cosmochimica Acta, 61, 1635–1652.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. A. Maher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Supplementary material 2 (DOCX 1805 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McVay, I.R., Maher, W.A., Krikowa, F. et al. Metal concentrations in waters, sediments and biota of the far south-east coast of New South Wales, Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents. Environ Geochem Health 41, 1351–1367 (2019). https://doi.org/10.1007/s10653-018-0215-8

Download citation

Keywords

  • Metals
  • Sediments
  • Biota NSW South coast
  • Australia