Enhanced irreversible fixation of cesium by wetting and drying cycles in soil

  • Sang-Min Park
  • Jung-Seok Yang
  • Daniel C. W. Tsang
  • Daniel S. Alessi
  • Kitae BaekEmail author
Original Paper


The retention of radioactive cesium (Cs) in soil is significantly related to the types of clay minerals, while the weathering process affects the irreversible adsorption sites in clay minerals. In this study, the effect of weathering (exposure duration of Cs and repeated wetting and drying cycles) on fractionation of Cs in soils was investigated using fractionation analysis by the sequential extraction. The residual fraction of Cs increased slowly with exposure time but increased rapidly by repeated wetting and drying cycles. XRD analysis shows that a 1.43 nm of interlayer size for vermiculite is shortened to 1.00 nm, i.e., similar to that of illite. The change implies the potential that the structure of expandable clay minerals is transformed to the non-expandable structure by weathering process after Cs retention. Based on the result, the residual fraction of Cs, most stable form of Cs in the soil, reached relatively rapidly to a maximum. However, the process is much slower kinetically in the field because the bench-scale weathering process used in this study is more aggressive. This study implies that Cs fractionations in the soil are converted into a more stable fraction by weathering processes in the soil. Therefore, Cs removal should be conducted as soon as possible after accidental release of Cs in an environmental side.


Cesium fractionation Wetting and drying cycles Weathering Clay minerals Soil contamination 



This work was financially supported by GAIA Project funded by KEITI (Grant No. 2015000550008).


  1. Askbrant, S., Melin, J., Sandalls, J., Rauret, G., Vallejo, R., Hinton, T., et al. (1996). Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. Journal of Environmental Radioactivity, 31, 287–312.CrossRefGoogle Scholar
  2. Bouzidi, A., Souahi, F., & Hanini, S. (2010). Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. Journal of Hazardous Materials, 184, 640–646.CrossRefGoogle Scholar
  3. Cambray, R. S., Cawse, P. A., Garland, J. A., Gibson, J. A. B., Johnson, P., Lewis, G. N. J., et al. (1987). Observations on Radioactivity from the Chernobyl Accident. Nuclear Energy-Journal of the British Nuclear Energy Society, 26, 77–101.Google Scholar
  4. Cornell, R. M. (1993). Adsorption of cesium on minerals—A review. Journal of Radioanalytical and Nuclear Chemistry-Articles, 171, 483–500.CrossRefGoogle Scholar
  5. Ding, D. H., Zhang, Z. Y., Lei, Z. F., Yang, Y. N., & Cai, T. M. (2016). Remediation of radiocesium-contaminated liquid waste, soil, and ash: A mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environmental Science and Pollution Research, 23, 2249–2263.CrossRefGoogle Scholar
  6. Dubrova, Y. E., Nesterov, V. N., Krouchinsky, N. G., Ostapenko, V. A., Neumann, R., Neil, D. L., et al. (1996). Human minisatellite mutation rate after the Chernobyl accident. Nature, 380, 683–686.CrossRefGoogle Scholar
  7. Dumat, C., Quiquampoix, H., & Staunton, S. (2000). Adsorption of cesium by synthetic clay-organic matter complexes: Effect of the nature of organic polymers. Environmental Science and Technology, 34, 2985–2989.CrossRefGoogle Scholar
  8. Endo, S., Kimura, S., Takatsuji, T., Nanasawa, K., Imanaka, T., & Shizuma, K. (2012). Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi Nuclear Power Plant accident and associated estimated cumulative external dose estimation. Journal of Environmental Radioactivity, 111, 18–27.CrossRefGoogle Scholar
  9. Frost, R. L., Kristof, J., Horvath, E., & Kloprogge, J. T. (1999). Modification of kaolinite surfaces with cesium acetate at 25, 120, and 220 degrees C. Langmuir, 15, 8787–8794.CrossRefGoogle Scholar
  10. Fukushi, K., Sakai, H., Itono, T., Tamura, A., & Arai, S. (2014). Desorption of intrinsic cesium from smectite: Inhibitive effects of clay particle organization on cesium desorption. Environmental Science and Technology, 48, 10743–10749.CrossRefGoogle Scholar
  11. Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L., et al. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134.CrossRefGoogle Scholar
  12. Giannakopoulou, F., Haidouti, C., Chronopoulou, A., & Gasparatos, D. (2007). Sorption behavior of cesium on various soils under different pH levels. Journal of Hazardous Materials, 149, 553–556.CrossRefGoogle Scholar
  13. Gommers, A., Thiry, Y., Vandenhove, H., Vandecasteele, C. M., Smolders, E., & Merckx, R. (2000). Radiocesium uptake by one-year-old willows planted as short rotation coppice. Journal of Environmental Quality, 29, 1384–1390.CrossRefGoogle Scholar
  14. Hou, X. L., Fogh, C. L., Kucera, J., Andersson, K. G., Dahlgaard, H., & Nielsen, S. P. (2003). Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Science of the Total Environment, 308, 97–109.CrossRefGoogle Scholar
  15. Huo, X. X., Wu, L. M., Liao, L. B., Xia, Z. G., & Wang, L. J. (2012). The effect of interlayer cations on the expansion of vermiculite. Powder Technology, 224, 241–246.CrossRefGoogle Scholar
  16. Kang, D. J., Seo, Y. J., Saito, T., Suzuki, H., & Ishii, Y. (2012). Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions. Ecotoxicology and Environmental Safety, 82, 122–126.CrossRefGoogle Scholar
  17. Kato, H., Onda, Y., & Teramage, M. (2012). Depth distribution of Cs-137, Cs-134, and I-131 in soil profile after Fukushima Dai-ichi Nuclear Power Plant Accident. Journal of Environmental Radioactivity, 111, 59–64.CrossRefGoogle Scholar
  18. Kim, E. J., Jeon, E. K., & Baek, K. (2016). Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA. Chemosphere, 152, 274–283.CrossRefGoogle Scholar
  19. Kim, G. N., Kim, S. S., Park, U. R., & Moon, J. K. (2015). Decontamination of soil contaminated with cesium using electrokinetic–electrodialytic method. Electrochimica Acta, 181, 233–237.CrossRefGoogle Scholar
  20. Kim, B. H., Park, C. W., Yang, H. M., Seo, B. K., Lee, B. S., Lee, K. W., et al. (2017). Comparison of Cs desorption from hydrobiotite by cationic polyelectrolyte and cationic surfactant. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 522, 382–388.Google Scholar
  21. Kogure, T., Morimoto, K., Tamura, K., Sato, H., & Yamagishi, A. (2012). XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chemistry Letters, 41, 380–382.CrossRefGoogle Scholar
  22. Lasat, M. M., Norvell, W. A., & Kochian, L. V. (1997). Potential for phytoextraction of Cs-137 from a contaminated soil. Plant and Soil, 195, 99–106.CrossRefGoogle Scholar
  23. Lee, J., Park, S. M., Jeon, E. K., & Baek, K. (2017). Selective and irreversible adsorption mechanism of cesium on illite. Applied Geochemistry, 85, 188–193.CrossRefGoogle Scholar
  24. Llano, A. Y., Benitez, A. H., & Gutierrez, M. G. (1998). Cesium sorption studies on Spanish clay materials. Radiochimica Acta, 82, 275–278.Google Scholar
  25. Maes, E., Vielvoye, L., Stone, W., & Delvaux, B. (1999). Fixation of radiocaesium traces in a weathering sequence mica →  vermiculite → hydroxy interlayered vermiculite. European Journal of Soil Science, 50, 107–115.CrossRefGoogle Scholar
  26. Mallampati, S. R., Mitoma, Y., Okuda, T., Sakita, S., & Kakeda, M. (2012). High immobilization of soil cesium using ball milling with nano-metallic Ca/CaO/NaH2PO4: Implications for the remediation of radioactive soils. Environmental Chemistry Letters, 10, 201–207.CrossRefGoogle Scholar
  27. McKinley, J. P., Zachara, J. M., Heald, S. M., Dohnalkova, A., Newville, M. G., & Sutton, S. R. (2004). Microscale distribution of cesium sorbed to biotite and muscovite. Environmental Science and Technology, 38, 1017–1023.CrossRefGoogle Scholar
  28. Motokawa, R., Endo, H., Yokoyama, S., Nishitsuji, S., Kobayashi, T., Suzuki, S., et al. (2014). Collective structural changes in vermiculite clay suspensions induced by cesium ions. Scientific Reports, 4, 4608–4616.Google Scholar
  29. Mukai, H., Hirose, A., Motai, S., Kikuchi, R., Tanoi, K., Nakanishi, T. M., et al. (2016). Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima. Scientific Reports, 6, 21543.CrossRefGoogle Scholar
  30. Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil Science and Plant Nutrition, 54, 479–489.CrossRefGoogle Scholar
  31. Nishijima, S., Akiyama, Y., Mishima, F., Watanabe, T., Yamasaki, T., Nagaya, S., et al. (2013). Study on decontamination of radioactive cesium from soil by HTS magnetic separation system. IEEE Transactions on Applied Superconductivity, 23, 3700405.CrossRefGoogle Scholar
  32. Park, C. W., Kim, B. H., Yang, H. M., Seo, B. K., & Lee, K. W. (2017a). Enhanced desorption of Cs from clays by a polymeric cation-exchange agent. Journal of Hazardous Materials, 327, 127–134.CrossRefGoogle Scholar
  33. Park, S. M., Lee, J., Kim, Y. H., Lee, J. S., & Baek, K. (2017b). Influence of physicochemical properties on cesium adsorption onto soil. Journal of Soil Groundwater Environment, 22, 27–32.CrossRefGoogle Scholar
  34. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.CrossRefGoogle Scholar
  35. Saito, T., Makino, H., & Tanaka, S. (2014). Geochemical and grain-size distribution of radioactive and stable cesium in Fukushima soils: Implications for their long-term behavior. Journal of Environmental Radioactivity, 138, 11–18.CrossRefGoogle Scholar
  36. Saito, K., Tanihata, I., Fujiwara, M., Saito, T., Shimoura, S., Otsuka, T., et al. (2015). Detailed deposition density maps constructed by large-scale soil sampling for gamma-ray emitting radioactive nuclides from the Fukushima Dai-ichi Nuclear Power Plant accident. Journal of Environmental Radioactivity, 139, 308–319.CrossRefGoogle Scholar
  37. Sawhney, B. L. (1970). Potassium and cesium ion selectivity in relation to clay mineral structure. Clays and Clay Minerals, 18, 47–52.CrossRefGoogle Scholar
  38. Sawhney, B. L. (1972). Selective sorption and fixation of cations by clay-minerals—review. Clays and Clay Minerals, 20, 93–100.CrossRefGoogle Scholar
  39. Shaw, G., & Bell, J. N. B. (1991). Competitive effects of potassium and ammonium on cesium uptake kinetics in wheat. Journal of Environmental Radioactivity, 13, 283–296.CrossRefGoogle Scholar
  40. Singh, S., Eapen, S., Thorat, V., Kaushik, C. P., Raj, K., & D’Souza, S. F. (2008). Phytoremediation of (137)cesium and (90)strontium from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicology and Environmental Safety, 69, 306–311.CrossRefGoogle Scholar
  41. Singh, S., Thorat, V., Kaushik, C. P., Raj, K., Eapen, S., & D’Souza, S. F. (2009). Potential of Chromolaena odorata for phytoremediation of Cs-137 from solution and low level nuclear waste. Journal of Hazardous Materials, 162, 743–745.CrossRefGoogle Scholar
  42. Staunton, S., Dumat, C., & Zsolnay, A. (2002). Possible role of organic matter in radiocaesium adsorption in soils. Journal of Environmental Radioactivity, 58, 163–173.CrossRefGoogle Scholar
  43. Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., et al. (2012). Vertical profiles of Iodine-131 and Cesium-137 in soils in Fukushima Prefecture related to the Fukushima Daiichi nuclear power station accident. Geochemical Journal, 46, 73–76.CrossRefGoogle Scholar
  44. Tsukada, H., Hasegawa, H., Hisamatsu, S., & Yamasaki, S. (2002). Transfer of Cs-137 and stable Cs from paddy soil to polished rice in Aomori, Japan. Journal of Environmental Radioactivity, 59, 351–363.CrossRefGoogle Scholar
  45. Wang, T. H., Li, M. H., Wei, Y. Y., & Teng, S. P. (2010). Desorption of cesium from granite under various aqueous conditions. Applied Radiation and Isotopes, 68, 2140–2146.CrossRefGoogle Scholar
  46. Wendling, L. A., Harsh, J. B., Ward, T. E., Palmer, C. D., Hamilton, M. A., Boyle, J. S., et al. (2005). Cesium desorption from lllite as affected by exudates from rhizosphere bacteria. Environmental Science and Technology, 39, 4505–4512.CrossRefGoogle Scholar
  47. Willms, C., Li, Z. H., Allen, L., & Evans, C. V. (2004). Desorption of cesium from kaolinite and illite using alkylammonium salts. Applied Clay Science, 25, 125–133.CrossRefGoogle Scholar
  48. Yamasaki, S., Imoto, J., Furuki, G., Ochiai, A., Ohnuki, T., Sueki, K., et al. (2016). Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant. Science of the Total Environment, 551, 155–162.CrossRefGoogle Scholar
  49. Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences of the United States of America, 108, 19530–19534.CrossRefGoogle Scholar
  50. Yin, X., Wang, X. P., Wu, H., Ohnuki, T., & Takeshita, K. (2017). Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations. Journal of Hazardous Materials, 326, 47–53.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Environmental Engineering and Soil Environment Research CenterChonbuk National UniversityJeonju-siRepublic of Korea
  2. 2.Systems Biotechnology Research CenterKIST Gangneung Institute of Natural ProductsGangneung-siRepublic of Korea
  3. 3.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong
  4. 4.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations