Environmental Geochemistry and Health

, Volume 41, Issue 2, pp 699–713 | Cite as

Urban geochemistry and potential human health risks in the Metropolitan Area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition

  • N. CappellettiEmail author
  • M. Astoviza
  • M. Morrone
  • L. Tatone
Original Paper


Soil, street dust, and bulk deposition (dry and wet deposition) were collected in the Metropolitan Area of Buenos Aires (MABA), Argentina, to assess the polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) pollution and the potential risks to human health. Compared with other countries, the mean concentration of PAHs and PCBs in surface soils, street dust and bulk deposition of MABA were at a low or moderate level. Average PAHs and PCBs concentrations in bulk deposition (5.7 ± 5.1 and 0.41 ± 0.25 µg g−1, respectively) were five and ten times higher than those of soil (1.08 ± 0.98 and 0.02 ± 0.01 µg g−1) and street dust (1.2 ± 0.95 and 0.04 ± 0.03 µg g−1), respectively. Different compositional profiles, observed in the three matrices for both groups of contaminants, could be attributed to dissimilar source contribution, partition processes between gas and particulate phases, and transformation. The most contaminated bulk deposition presented higher values for cancer and non-cancer risks relative to soil and street dust. In all matrices, non-carcinogenic risks were below the safety threshold (HI < 1). Regarding carcinogenic risks, exposure to both bulk deposition and soil indicated a moderated potential for cancerous development (Incremental lifetime cancer risk ~ 3.0 × 10−6).


PAHs PCBs Soil Street dust Bulk deposition Human health risk 



This study is a part of the Project UNDAVCYT2013 funded by National University of Avellaneda, Argentina. The authors wish to thank Dr. Lucas Garbin for the English revisions.

Supplementary material

10653_2018_163_MOESM1_ESM.docx (107 kb)
Supplementary material 1 (DOCX 107 kb)


  1. Allen, J., Dookeran, N., Smith, K., Sarofim, A., & Lafleur, A. (1996). Measurement of aerosols in Massachusetts. Environmental Science and Technology, 30, 1023–1031.CrossRefGoogle Scholar
  2. Astoviza, M., Cappelletti, N., Bilos, C., Migoya, C., & Colombo, J. C. (2016). Airborne PCB patterns and urban scale in the Southern Río de la Plata. Science of the Total Environment, 572, 16–22.CrossRefGoogle Scholar
  3. ATSDR. (2000). Toxicological profile for Polychlorinated Biphenyls (PCBs) U.S. Atlanta, Georgia: Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry.Google Scholar
  4. Cabrerizo, A., & Jones, K. (2011). Factors influencing the soil–air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environmental Science and Technology, 45, 4785–4792.CrossRefGoogle Scholar
  5. Cachada, A., Pato, P., Rocha-santos, T., Ferreira da Silva, E., & Duarte, C. (2012). Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment, 430, 184–192.CrossRefGoogle Scholar
  6. Calesso Teixeira, E., Agudelo-castañeda, D., & Porta Mattiuzi, C. (2015). Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models. Science of the Total Environment, 538, 212–219.CrossRefGoogle Scholar
  7. Cavalcante, R., Sousa, F., Nascimento, R., Silveira, E., & Viana, R. (2012). Influence of urban activities on polycyclic aromatic hydrocarbons in precipitation: Distribution, sources and depositional flux in a developing metropolis, Fortaleza, Brazil. Science of the Total Environment, 414, 287–292.CrossRefGoogle Scholar
  8. CCME (Canadian Council of Ministers of the Environment). (2007). Canadian soil quality guidelines for the protection of environmental and human health. Update 7.Google Scholar
  9. Cetin, B., Ozturk, F., Keles, M., & Yurdakul, S. (2017). PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological. Environmental Pollution, 220, 1322–1332.CrossRefGoogle Scholar
  10. Colombo, J., Barreda, A., Bilos, C., Cappelletti, N., Demichelis, S., Lombardi, P., et al. (2005). Oil spill in the Río de la Plata estuary, Argentina: 1–biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution, 134, 277–289.CrossRefGoogle Scholar
  11. Demircioglu, E., Sofuoglu, A., & Odabasi, M. (2011). Particle-phase dry deposition and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in Izmir, Turkey. Journal of Hazardous Materials, 186, 328–335.CrossRefGoogle Scholar
  12. Diamond, M., Melymuk, L., Csiszar, S. A., & Robson, M. (2010). Estimation of PCB stocks, emissions, and urban fate: Will our policies reduce concentrations and exposure? Environmental Science and Technology, 44, 2777–2783.CrossRefGoogle Scholar
  13. Diefenbacher, P., Gerecke, A., Bogdal, C., & Hungerbu, K. (2016). Spatial distribution of atmospheric PCBs in Zurich, Switzerland: Do joint sealants still matter? Environmental Science and Technology, 50, 232–239.CrossRefGoogle Scholar
  14. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 25, 4501–4512.CrossRefGoogle Scholar
  15. Franz, T., Eisenreich, S., & Holsen, T. (1998). Dry deposition of particulate polychlorinated biphenyls and polycyclic aromatic hydrocarbons to Lake Michigan. Environmental Science and Technology, 32, 3681–3688.CrossRefGoogle Scholar
  16. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: part 1. Physical and mineralogical methods. 9. Soil Science Society of America (Vol. 2, pp. 383–411). Madison: Agronomy.Google Scholar
  17. Glüge, J., Bogdal, C., Scheringer, M., & Hungerbühler, K. (2016). What determines PCB concentrations in soils in rural and urban areas? Insights from a multi-media fate model for Switzerland as a case study. Science of the Total Environment, 550, 1152–1162.CrossRefGoogle Scholar
  18. Han, B., Bai, Z., Guo, G., Wang, F., Li, F., Liu, Q., et al. (2009). Characterization of PM 10 fraction of road dust for polycyclic aromatic hydrocarbons (PAHs) from Anshan, China. Journal of Hazardous Materials, 170, 934–940.CrossRefGoogle Scholar
  19. Health Canada. (2007) (draft). Federal contaminated site risk assessment in Canada. Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment, Version 2.0.Google Scholar
  20. Holsen, T., Noll, K., Liu, S., & Lee, W. (1991). Dry deposition of polychlorinated biphenyls in urban areas. Environmental Science and Technology, 25, 1075–1081.CrossRefGoogle Scholar
  21. IARC (International Agency for Research on Cancer). (2010). Some Non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92. Lyon, France: International Agency for Research on Cancer.Google Scholar
  22. Irvine, K., & Loganathan, B. (1998). Localized enrichment of PCB levels in street dust due to redistribution by wind. Water, Air, and Soil pollution, 105, 603–615.CrossRefGoogle Scholar
  23. Jartun, M., Ottesen, R., Steinnes, E., & Volden, T. (2009). Painted surfaces-important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment. Environmental Pollution, 157, 295–302.CrossRefGoogle Scholar
  24. Jiang, Y., Hu, X., Yves, U., Zhan, H., & Wu, Y. (2014). Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicology Environmental Safety, 106, 11–18.CrossRefGoogle Scholar
  25. Jones, K., Stratford, J., Waterhouse, K., Furlong, T., & Glger, W. (1989a). Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environmental Science and Technology, 23, 95–101.CrossRefGoogle Scholar
  26. Jones, K., Stratford, J., Waterhouse, K., & Vogt, N. (1989b). Organic contaminants in Welsh soils: Polynuclear aromatic hydrocarbons. Environmental Science and Technology, 23, 540–550.CrossRefGoogle Scholar
  27. Kang, Y., Shao, D., Li, N., Yang, G., Zhang, Q., Zeng, L., et al. (2015). Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model. Environmental Science and Pollution Research, 22(5), 3451–3456.CrossRefGoogle Scholar
  28. Klees, M., Hiester, E., Bruckmann, P., Molt, K., & Schmidt, T. (2015). Science of the total environment polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in street dust of North Rhine-Westphalia, Germany. Science of the Total Environment, 511, 72–81.CrossRefGoogle Scholar
  29. Knafla, A., Phillipps, K., Brecher, R., Petrovic, S., & Richardson, M. (2006). Development of a dermal cancer slope factor for benzo [a] pyrene. Regulatory Toxicology and Pharmacology, 45, 159–168.CrossRefGoogle Scholar
  30. Larsen, R., & Baker, J. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.CrossRefGoogle Scholar
  31. Law 24.051, Decree: 831/93. Hazardous waste. Annex II Table 9. Buenos Aires. Argentina. 23/4/93.Google Scholar
  32. Meijer, S., Steinnes, E., Ockenden, W., & Jones, K. (2002). Influence of environmental variables on the spatial distribution of PCBs in Norwegian and U.K. soils: Implications for global cycling. Environmental Science and Technology, 36, 2146–2153.CrossRefGoogle Scholar
  33. Montelay-Massei, A., Ollivon, D., Garban, B., Teil, M., Blanchard, M., Chevreuil, M. (2004). Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 55, 555–565.CrossRefGoogle Scholar
  34. Nadal, M., Schuhmacher, M., & Domingo, J. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.CrossRefGoogle Scholar
  35. Nadal, M., Schuhmacher, M., & Domingo, J. (2011). Long-term environmental monitoring of persistent organic pollutants and metals in a chemical/petrochemical area: Human health risks. Environmental Pollution, 159, 1769–1777.CrossRefGoogle Scholar
  36. Nakao, T., Aozasa, O., Ohta, S., & Miyata, H. (2006). Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator. Chemosphere, 62, 459–468.CrossRefGoogle Scholar
  37. Nam, J., Thomas, G., Jaward, F., Steinnes, E., Gustafsson, O., & Jones, K. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596–1602.CrossRefGoogle Scholar
  38. OEHHA (California Office of Environmental Health Hazard Assessment). (2017). Toxicity criteria database.
  39. Offenberg, J., & Baker, J. (1999). Aerosol size distributions of polycyclic aromatic hydrocarbons in urban and over-water atmospheres. Environmental Science and Technology, 33, 3324–3331.CrossRefGoogle Scholar
  40. Offenberg, J., & Baker, J. (2002). Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. Environmental Science and Technology, 36, 3763–3771.CrossRefGoogle Scholar
  41. Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159, 803–808.CrossRefGoogle Scholar
  42. Roberts, J., Wallace, L., Camann, D., Dickey, P., Gilbert, S., Lewis, R., et al. (2009). Monitoring and reducing exposure of infants to pollutants in house dust. Reviews of Environmental Contamination and Toxicology, 201, 1–38.Google Scholar
  43. Robson, M., Melymuk, L., Csiszar, S., Giang, A., Diamond, M., & Helm, P. (2010). Continuing sources of PCBs: The significance of building sealants. Environmental International, 36, 506–513.CrossRefGoogle Scholar
  44. Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Reza, A., Jaafarzadeh, N., et al. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723.CrossRefGoogle Scholar
  45. Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicology, 234, 49–133.CrossRefGoogle Scholar
  46. Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry, 35, 88–98.CrossRefGoogle Scholar
  47. Tasdemir, Y., Odabasi, M., Vardar, N., Sofuoglu, A., Murphy, J., & Holsen, T. M. (2004). Dry deposition fluxes and velocities of polychlorinated biphenyls (PCBs) associated with particles. Atmospheric Environment, 38, 2447–2456.CrossRefGoogle Scholar
  48. Teil, M., Blanchard, M., & Chevreuil, M. (2004). Atmospheric deposition of organochlorines (PCBs and pesticides) in Northern France. Chemosphere, 55, 501–514.CrossRefGoogle Scholar
  49. Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.CrossRefGoogle Scholar
  50. USEPA (U.S. Environmental Protection Agency). (1991a). Risk assessment guidance fo superfund. Volume I: Human health evaluation manual. Supplemental guidance, Standard default exposure factors. Interim final. OSWER directive: 9285.6-03. Office of Emergency and Remedial Response Toxics Integration Branch.Google Scholar
  51. USEPA (U.S. Environmental Protection Agency). (1991b). Risk assessment guidance fo superfund Volume I: Human health evaluation manual (part B, development of risk-based preliminary remediation goals) Interim. EPA/540/R-92/003. Office of Emergency and Remedial Response.Google Scholar
  52. USEPA (U.S. Environmental Protection Agency). (1993). Provisional guidance for quantitative risk assessment of Polycyclic Aromatic Hydrocarbons EPA/600/R-93/089. Environmental criteria and assessment office.Google Scholar
  53. USEPA (U.S. Environmental Protection Agency). (1996). Soil screening guidance: user’s guide. Second edition. Publication 9355.4-23. Office of Emergency and remedial Response.Google Scholar
  54. USEPA (U.S. Environmental Protection Agency). (2002). Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. OSWER 9285.6-10. Office of Research and Development.Google Scholar
  55. USEPA (U.S. Environmental Protection Agency). (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP. Office of Superfund Remediation and Technology Innovation.Google Scholar
  56. USEPA (U.S. Environmental Protection Agency). (2011). Exposure factors handbook: 2011 edition. EPA/600/R-09/052F. National Center for Environmental Assessment. Office of Research and Development.Google Scholar
  57. USEPA (U.S. Environmental Protection Agency). (2017). Integrated risk information system.
  58. Vane, C., Kim, A., Beriro, D., Cave, M., Knights, K., Moss-hayes, V., et al. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314.CrossRefGoogle Scholar
  59. Wang, W., Huang, M., Kang, Y., Wang, H., Leung, A., Cheung, K., et al. (2011a). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.CrossRefGoogle Scholar
  60. Wang, X., Miao, Y., Zhang, Y., Li, Y., Wu, M., & Yu, G. (2013). Environment Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.CrossRefGoogle Scholar
  61. Wang, W., Simonich, M., Giri, B., Xue, M., Zhao, J., Chen, S., et al. (2011b). Spatial distribution and seasonal variation of atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Beijing-Tiajin region, North China. Environmental Pollution, 159, 287–293.CrossRefGoogle Scholar
  62. Wu, S., Tao, S., Xu, F., Dawson, R., Lan, T., Li, B., et al. (2005). Polycyclic aromatic hydrocarbons in dust fall in Tianjin, China. Science of the Total Environment, 345, 115–126.CrossRefGoogle Scholar
  63. Xu, L., & Shu, X. (2014). Aggregate human health risk assessment from dust of daily life in the urban environment of Beijing. Risk Analysis, 34(4), 670–682.CrossRefGoogle Scholar
  64. Yu, B.-W., Jin, G.-Z., Moon, Y.-H., Kim, M.-K., Kyoung, J.-D., & Chang, Y.-S. (2006). Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere, 62, 494–501.CrossRefGoogle Scholar
  65. Yunker, M., Macdonald, R., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Grupo de investigación en Geología AmbientalUniversidad Nacional de Avellaneda-Comisión investigaciones científicasAvellanedaArgentina
  3. 3.Laboratorio de Química Ambiental y Biogeoquímica, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataFlorencio VarelaArgentina

Personalised recommendations