Skip to main content

Fertilizer usage and cadmium in soils, crops and food

Abstract

Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\), \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Amarasiri, S. L. (2016). Private communication based on: District-based Technical Recommendations of the Department of Agriculture, Sri Lanka for Fertilizer inputs for paddy cultivation.

  2. Aravinna, P., Priyantha, N., Pitawala, A., & Yatigammana, S. K. (2017). Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. Journal of Environmental Science and Health, Part B, 52(1), 37–47. https://doi.org/10.1080/03601234.2016.1229445.

    CAS  Article  Google Scholar 

  3. ARL. (2012). Cadmium toxicity and Zn. Tech. rep., Analytical Research labs, Inc., Phoenix, Arizona, USA. http://www.arltma.com/Articles/CadmiumToxDoc.htm.

  4. Arora, P., Vasa, P., Brenner, D., Iglar, K., McFarlane, P., Morrison, H., et al. (2013). Prevalence estimates of chronic kidney disease in Canada: Results of a nationally representative survey. Canadian Medical Association Journal, 185, E417–E423.

    Article  Google Scholar 

  5. ASTDR, U. (2008). Notice of the revised priority list of hazardous substances that will be the subject of toxicological profiles. https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=191&tid=34

  6. ATSDR, U. (2013). Cadmium toxicity US standards for cadmium exposure. https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=7

  7. Baldwin, R. L. (1996). How Hofmeister ion interactions affect protein stability. Biophysical Journal, 71, 2056–2063.

    CAS  Article  Google Scholar 

  8. Bandara, J., Wijewardena, H., Liyanege, J., Upul, M., & Bandara, J. (2010). Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicology Letters, 198(1), 33–39. https://doi.org/10.1016/j.toxlet.2010.04.016. Epub 2010 Apr 27.

    CAS  Article  Google Scholar 

  9. Bech, J., Suarez, M., Reverter, F., Tume, P., Sánchez, P., Roca, N., et al. (2010). Selenium and other trace element in phosphorites: A comparison between those of the Bayovar-Sechura and other provenances. Journal of Geochemical Exploration, 107, 146–160. https://doi.org/10.1016/j.gexplo.2010.04.002.

    CAS  Article  Google Scholar 

  10. Bickmore, B., Bosbach, D., Hochella, M., Charlet, L., & Rufe, E. (2001). In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86(4), 411–423.

    CAS  Article  Google Scholar 

  11. Brzóska, M. M., & Moniuszko-Jkoniuk, J. (2001). Interactions between cadmium and zinc in the orgnism. Food and Chemical Toxicology, 39, 967–980.

    Article  Google Scholar 

  12. CCF12. (2018). Codex alimentarius, codex committee on contaminants in food. Tech. rep., FAO, Rome

  13. CTAHR-Hawaii U (2018) Fertilizer material. Tech. rep., College of Tropical Agriculture and Human Resources, University of Hawaii, https://www.ctahr.hawaii.edu/mauisoil/c_material.aspx

  14. Chaney, R. L. (2012). Chapter 2: Food safety issues for mineral and organic fertilizers. Advances in Agronomy, 117, 51–116.

    CAS  Article  Google Scholar 

  15. Chen, Y., Wang, S., Nan, Z., Ma, J., Zhang, F., Li, Y., et al. (2017). Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environmental and Experimental Botany, 134, 54–61.

    CAS  Article  Google Scholar 

  16. Dharma-wardana, M. W. C. (2017). Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0017-4.

    Article  Google Scholar 

  17. Dharma-wardana, M. W. C., Amarasiri, S. L., Dharmawardene, N., & Panabokke, C. R. (2015). Chronic kidney disease of unknown aetiology and ground-water ionicity: Study based on Sri Lanka. Environmental Geochemistry and Health, 37, 221–231.

    CAS  Article  Google Scholar 

  18. Dissanayake, C., & Rohana, C. (2005). Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka. Ceylon Journal of Science, 46, 43–17.

    Google Scholar 

  19. Diyabalanage, S., Abekoon, S., Watanabe, I., et al. (2016a). Has irrigated water from Mahaweli river contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka? Environmental Geochemistry and Health, 38, 439–454. https://doi.org/10.1007/s10653-015-9749-1.

    CAS  Article  Google Scholar 

  20. Diyabalanage, S., Navarathna, T., Abeysundara, T. A., et al. (2016b). Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: Implications for public health. Springer Plus, 5, 1684. https://doi.org/10.1186/s40064-016-3547-9.

    CAS  Article  Google Scholar 

  21. DOA-SL (2016). Department of Agriculture, Sri Lanka (2017) Private communication.

  22. Edirisinghe, E. A. N. V., Manthrithilake, H., Pitawala, H. M. T. G. A., Dharmagunawardhane, H. A., & Wijayawardane, R. L. (2017). Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka. Isotopes in Environmental and Health Studies, 26, 1–18.

    Google Scholar 

  23. Eriksson, J. (2001). Critical load set to ‘no further increase in Cd content of agricultural soils’ consequences. In Proceedings soil science and conservation research institute Bratislava, Slovak Republic, ad hoc international expert group on effect-based critical limits for heavy metals pp 54–58, Bratislavia. Slovak Republic 11th 13th Oct 2000.

  24. Eriksson, J., Andersson, A., & Andersson, R. (1997). Current status of Swedish arable soils. Tech. rep., Swedish Environmental Protection Agency, Report 4778, Solna. (in Siwedish with English summary).

  25. Gifford, F. J., Gifford, R. M., Eddleston, M., & Dhaun, N. (2017). Endemic nephropathy around the world. Kidney Int Rep, 2, https://doi.org/10.1016/j.ekir.2016.11.003.

    Article  Google Scholar 

  26. Grant, C., Harapiak, B. J. T. L. D., & Flore, N. A. (2002). Effect of phosphate source, rate and cadmium content and use of Penicillium bilaii on phosphorus, zinc, and cadmium concentration in durum wheat. Journal of the Science of Food and Agriculture, 82, 301–308.

    CAS  Article  Google Scholar 

  27. Grant, C. A., & Sheppard, S. C. (2008). Fertilizer impacts on cadmium availability in agricultural soils and crops. Human and Ecological Risk Assessment, 14, 210–228.

    CAS  Article  Google Scholar 

  28. Illeperuma, O. A., Dharmagunawardhane, H. A., & Herath, K. R. P. (2009). Dissolution of aluminium from substandard utensils under high fluoride stress: A possible risk factor for chronic renal failures in the North-Central province. Journal of the National Science Foundation of Sri Lanka, 37, 219–222.

    Article  Google Scholar 

  29. Jacobs, R. M., Jones, A. O. L., Fry, B. E. J., & Fox, R. M. S. (1978). Decreased long term retention of cadmium in Japanese quail produced by a combined supplement of zinc, copper and manganese. The Journal of Nutrition, 108, 901–910.

    CAS  Article  Google Scholar 

  30. Jansson, G. (2002). Cadmium in arable crops. Ph.D thesis, Uppsala University of Agricultural Science, Sweden

  31. Jarup, L., Berglund, M., Elinder, C. G., et al. (1998). Health effects of cadmium exposure: A review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health, 24, 1–51.

    Article  Google Scholar 

  32. Jayasinghe, P., Herath, B., & Wickremasinghe, N. (2015). Technical review report based on visit to Anuradhapura CKDu affected areas; review of input-output water of reverse-osmosis installtions. Tech. rep., COSTI (Coordinating Office for Science and Technology Innovation, Sri Lanka), https://dh-web.org/placenames/posts/COSTI-Jaysinghe-RO.pdf

  33. Jayasumana, C., Fonseka, S., Fernando, A., Jayalath, K., Amarasinghe, M., Siribaddana, S., et al. (2015). Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springer Plus, 4, 90.

    Article  Google Scholar 

  34. Jayatilake, N. S. M., Maheepala, P., Metha, R. F., CKDu National Research Project Team. (2013). Chronic kidney disease of uncertain aetiology, prevalence and causative factors in a developing country. BMC Nephrology, 14, 180.

    Article  Google Scholar 

  35. JECFA. (2011). Joint FAO/WHO food standards programme CODEX committee on contaminants in foods fifth session. Tech. rep., WHO-FAO, Joint FAO/WHO Expert Committee on Food Additives (JECFA) http://www.fao.org/tempref/codex/Meetings/CCCF/CCCF5/cf05_INF.pdf.

  36. Jorhem, L., & Slanima, P. (2000). Does organic farming reduce content of Cd and certain other trace metals in plant foods? Journal of the Science of Food and Agriculture, 80, 43–48.

    CAS  Article  Google Scholar 

  37. Keller, A., & Schulin, R. (2003). Modeling heavy metal and phosphorus balances for farming systems. Nutrient Cycling in Agroecosystems, 66, 271–284.

    CAS  Article  Google Scholar 

  38. Kim, D. W., Kim, K.-Y., Choi, B. S., Youn, P., Ryu, D. Y., Klassen, C. E., et al. (2007). Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Archives of Toxicology, 81, 327–334.

    CAS  Article  Google Scholar 

  39. Kjellstrom, T. (1979). Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspectives, 28, 169–197.

    CAS  Article  Google Scholar 

  40. Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-Jolain, N. (2017). Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nature Plants, 3(17), 008. https://doi.org/10.1038/nplants.2017.8.

    Article  Google Scholar 

  41. Levine, K. E., Redmon, J. H., Elledge, M. F., Wanigasuriya, K. P., Smith, K., Munoz, B., et al. (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka - a multimedia laboratory analysis of biological, food, and environmental samples. Environmental Monitoring and Assessment, 188, 548.

    Article  Google Scholar 

  42. Loganathan, P., Headly, M. J., & Grace, N. D. (2008). Pasture soils contaminated with fertilizer-derived cadmium and fluorine. Reviews of Environmental Contamination and Toxicology, 129, 29–66.

    Article  Google Scholar 

  43. Liu, J., Li, K., Xu, J., Liang, J., Lu, X., Yang, J., et al. (2003). Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research, 83, 271–281.

    Article  Google Scholar 

  44. Manoharan, V., Loganathan, P., Tillman, R. W., & Parfitt, R. L. (2007). Interactive effects of soil acidity and fluorine on soil solution aluminum chemistry and barley (hordeum vulgare l.) root growth. Environmental Pollution, 145, 778–786.

    CAS  Article  Google Scholar 

  45. Matović, V., Buha, A., Bulat, Z., & Dukić-Ćosić, D. (2011). Cadmium toxicity revisited: Focus on oxidative stress induction and interactions with, Zn and Mg. Archives of Industrial Hygiene and Toxicology, 62, 65–76.

    Article  Google Scholar 

  46. McLaughlin, M. J., & Singh, B. R. (1999). Cadmium in soils and plants. Dordect, Holland: Kluwer.

    Book  Google Scholar 

  47. McLaughlin, M. J., Tiller, K. G., Beech, T. A., & Smart, M. K. (1994). Soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 34, 1013–1018.

    Article  Google Scholar 

  48. McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: the behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.

    CAS  Article  Google Scholar 

  49. Meharg, A. A., Norton, G., Deacon, V., Williams, P., Adomako, E., Price, A., et al. (2013). Variation in rice cadmium related to human exposure. Environmental Science & Technology, 47, 5613–5618.

    CAS  Article  Google Scholar 

  50. Moolenaar, S. (1999). Heavy metal balances, part II. management of cadmium, copper, lead and zinc in European agro-ecosystems. Journal of Industrial Ecology, 3, 41–53.

    CAS  Article  Google Scholar 

  51. Mott, S., Hoy, W., Gobe, G., Satarug, S., & Abeysekera, T. (2013). Assessment of cadmium load in renal biopsies from Sri Lankan people with chronic kidney disease of unknown origin. Nephrology Journal, 18, 15–17.

    Article  Google Scholar 

  52. Mulla, D. J., Page, A. L., & Ganje, T. J. (1980). Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization. Journal of Environmental Quality, 9, 408–12.

    CAS  Article  Google Scholar 

  53. Onyatta, J., & Huang, P. (2005). Phosphate-induced cadmium release from soils. Enfield: Science Publishers.

    Google Scholar 

  54. Paddy Statistics. (2015). 2014/2015 Maha Season, Dept. of Census and Statistics. ISBN 978-955-577-966-1, Battaramulla. Sri Lanka.

  55. Premarathne, H. M. P. L. (2006). Soil and crop contamination by toxic trace elements. Master’s thesis, Post Graduate Institute of Agriculture, University of Peradeniya, Sri Lanka, Technical Report.

  56. Pullakhandam, I. R. V., & Nair, K. P. M. (2009). Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: Kinetic analyses and possible mechanism. Indian Journal of Biochemistry and Biophysics, 46, 299–306.

    Google Scholar 

  57. Rietra, R., Mol, G., Rietjens, I., & Römkens, P. (2017). Cadmium in soil, crops and resultant dietary exposure. Tech. rep., Wageningen Environmental Research, Alterra- sustainable soil management, Wageningen Environmental Research Rapport 2784.

  58. Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–57.

    CAS  Article  Google Scholar 

  59. Rohana Chandrajith, T. A., & Dissanayake, C. B. (2012). The status of cadmium in the geo-environment of Sri Lanka. Ceylon Journal of Science (Physical Sciences), 16, 47–53.

    Google Scholar 

  60. Rosen, C. J., & Bierman, P. M. (2018). Potato fertilization on irrigated soils. Minnesota: University of Minnesota Agriculture Extension Service.

    Google Scholar 

  61. Sheppard, S. C., Grant, C. A., Sheppard, M. A., de Jong, R., & Long, J. (2009). Risk indicator for agricultural inputs of trace elements to Canadian soils. Journal of Environmental Quality, 38, 919–932.

    CAS  Article  Google Scholar 

  62. Schroder, H. A., & Balassa, J. J. (1963). Cadmium: Uptake by vegetables from superphosphate in soil. Science, 140(3568), 819–820.

    Article  Google Scholar 

  63. Sillanpää, M., & Jansson, H. (1992). Status of cadmium, lead, cobolt, and selenium in soils and plants of thirty countries. Tech. rep., FAO, Geneva

  64. Singh, B. R. (1994). Trace element availability to plants in agricultural soils, with special emphasis on fertilizer inputs. Environmental Reviews, 2, 133–146. https://doi.org/10.1139/a94-009.

    CAS  Article  Google Scholar 

  65. Sirot, V., Sarnieri, C., Volatier, J. L., & LeBlanc, J. C. (2008). Cadmium dietary intake and biomarker data in French high seafood consumers. Journal of Exposure Science and Environmental Epidemiology, 28, 400–409.

    Article  Google Scholar 

  66. SLSI. (2016). Private communication. https://www.iso.org/member/2091.html

  67. Smolders, E. (2001). Cadmium uptake by plants. International Journal of Occupational Medicine and Environmental Health, 14, 177–183.

    CAS  Google Scholar 

  68. Smolders, E., & Six, L. (2013). Revisiting and updating the effect of phosphate fertilizers to cadmium accumulation in European agricultural soils. Tech. rep., KU Leuven, Belgium, http://ec.europa.eu/health/scientific_committees/environmental_risks/docs/scher_o_168_rd_en.pdf

  69. Sparrow, L. A., Chapman, K. S. R., Parsley, D., Hardman, P. R., & Cullen, B. (1992). Response of potatoes (Sotanum tuberosum cv. Russet Burbank) to band-placed and broadcast high cadmium fertiliser on heavily cropped krasnozems in north-western Tasmania. Australian Journal of Experimental Agriculture, 32, 113–19.

    CAS  Article  Google Scholar 

  70. Sparrow, L. A., Salardini, A. A., & Johnstone, J. (1993). Field studies of cadmium in potatoes (Solanum tuberosum L.). III. Australian Journal of Agricultural Research, 45(1), 243–249.

    Article  Google Scholar 

  71. Sposito, G. (2008). The chemistry of soils (2nd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  72. Thammitiyagodage, M., Gunatillaka, M., Ekanayaka, N., Rathnayake, C., Horadagoda, N., Jayathissa, R., et al. (2017). Ingestion of dug well water from an area with high prevalence of chronic kidney disease of unknown etiology (CKDu) and development of kidney and liver lesions in rats. Ceylon Medical Journal, 62, 20–24. https://doi.org/10.4038/cmj.v62i1.8428.

    CAS  Article  Google Scholar 

  73. Tombacz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94.

    CAS  Article  Google Scholar 

  74. Tòth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Article  Google Scholar 

  75. Uraguchi, S., & Fujiwara, T. (2012). Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation. Rice (N Y)., 5(1), 5.

    Article  Google Scholar 

  76. Van Kauwenbergh, S. J. (1997). Cadmium and other minor elements in world resources of phosphate rock. The Fertiliser Society, 400; Proceedings, The Peterborough Fertiliser Society, P. O. Box 04, York, UK.

  77. Wales University, E. (2013). Science for environmental policy in-depth report: Soil contamination: Impacts on human health. Tech. rep., EU, via Science Communication Unit, University of Wales UK, http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf.

  78. Wanigasuriya, K. (2012). Aetiological factors of chronic kidney disease in the north central province of Sri Lanka: A review of evidence to-date. Journal of the College of Community Physicians of Sri Lanka, 17, 17–20.

    Article  Google Scholar 

  79. Wasana, H. M. S., Perera, G. D. R. K., De Panduka, S., Gunawardena, P. S., Fernando, P. S., & Bandara, J. (2017). WHO water quality standards vs synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Nature-Scientific Reports. https://doi.org/10.1038/srep42516.

    Article  Google Scholar 

  80. Weerasooriya, R., Wijesekara, H. K. D. K., & Bandara, A. (2002). Surface complexation modeling of cadmium adsorption on gibbsite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207, 13–24.

    CAS  Article  Google Scholar 

  81. World Bank. (2016). Fertilizer consumption (kilograms per hectare of arable land). Tech. rep., Food and Agriculture Organization, website: http://data.worldbank.org/indicator/AG.CON.FERT.ZS.

  82. Zapata, F., & Roy, R. N. (2004). Use of phosphate rocks for sustainable agriculture. Fertilizer and plant nutrition, bulletin 13, FAO, Rome, Italy. Tech. rep., Food and Agriculture Organization of the United Nations.

  83. Zhou, C.-F., Wang, Y.-J., Sun, R.-J., Liu, C., Fan, G.-P., Qin, W.-X., et al. (2014). Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida. Environmental Toxicology and Chemistry, 33, 2351–2357.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Sarath Amarasiri for his comments and drawing attention to some references.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. W. C. Dharma-wardana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dharma-wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ Geochem Health 40, 2739–2759 (2018). https://doi.org/10.1007/s10653-018-0140-x

Download citation

Keywords

  • Cadmium
  • Metal toxins
  • Phosphate
  • Crops
  • Fertilizers
  • Soils
  • Food