Magnetic chitosan/sodium alginate gel bead as a novel composite adsorbent for Cu(II) removal from aqueous solution

  • Hu-Chun Tao
  • Shuo Li
  • Li-Juan Zhang
  • Yi-Zhen Chen
  • Li-Ping Deng


Using sodium alginate hydrogel as skeleton, in combination with chitosan and magnetic Fe3O4, a new type of magnetic chitosan/sodium alginate gel bead (MCSB) was prepared. Adsorptive removal of Cu(II) from aqueous solutions was studied by using the MCSB as a promising candidate in environmental application. Different kinetics and isotherm models were employed to investigate the adsorption process. Based on Fourier transform infrared spectroscopy, field-emission scanning electron microscope, CHNS/O elements analysis, vibration magnetometer, and various means of characterization, a comprehensive analysis of the adsorption mechanism was conducted. The MCSB had a good magnetic performance with a saturation magnetization of 12.5 emu/g. Elemental analysis proved that the addition of chitosan introduced a considerable amount of nitrogen-rich groups, contributing significantly to copper adsorption onto gel beads. The contact time necessary for adsorption was optimized at 120 min to achieve equilibrium. Experimental data showed that the adsorption process agreed well with the Langmuir isotherm model and the pseudo-second-order kinetics model. The theoretical maximum adsorption capacity of MCSB for Cu(II) could reach as high as 124.53 mg/g. In conclusion, the MCSB in this study is a novel and promising composite adsorbent, which can be applied for practical applications in due course.


Sodium alginate gel bead Chitosan Magnetic Fe3O4 Cu(II) Adsorption 



The authors gratefully acknowledge the sponsorship from Shenzhen Science and Technology Innovation Commission (JCYJ20150731091351923 and JCYJ20160330095549229) and Shenzhen Municipal Development and Reform Commission (Discipline construction of watershed ecological engineering).

Supplementary material

10653_2018_137_MOESM1_ESM.docx (247 kb)
Supplementary material 1 (DOCX 247 kb)


  1. Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97(1–3), 219–243.CrossRefGoogle Scholar
  2. Bee, A., Talbot, D., Abramson, S., & Dupuis, V. (2011). Magnetic alginate beads for Pb(II) ions removal from wastewater. Journal of Colloid and Interface Science, 362(2), 486–492.CrossRefGoogle Scholar
  3. Benhamou, A., Baudu, M., Derriche, Z., & Basly, J. P. (2009). Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. Journal of Hazardous Materials, 171(1–3), 1001–1008.CrossRefGoogle Scholar
  4. Chen, J. P., Tendeyong, F., & Yiacoumi, S. (1997). Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Environmental Science and Technology, 31(5), 1433–1439.CrossRefGoogle Scholar
  5. da Silva, M. G. C., Canevesi, R. L. S., Welter, R. A., Vieira, M. G. A., & da Silva, E. A. (2015). Chemical equilibrium of ion exchange in the binary mixture Cu2+ and Ca2+ in calcium alginate. Adsorption-Journal of the International Adsorption Society, 21(6–7), 445–458.CrossRefGoogle Scholar
  6. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311–4330.CrossRefGoogle Scholar
  7. de Britto, D., & Campana-Filho, S. P. (2007). Kinetics of the thermal degradation of chitosan. Thermochimica Acta, 465(1–2), 73–82.CrossRefGoogle Scholar
  8. Fakhrullin, R. F., Garcia-Alonso, J., & Paunov, V. N. (2010). A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter, 6(2), 391–397.CrossRefGoogle Scholar
  9. Fu, F. L., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418.CrossRefGoogle Scholar
  10. Gama, M., Luna, F. M. T., Albarelli, J. Q., Beppu, M. M., & Vieira, R. S. (2017). Adsorption of copper on glass beads coated with chitosan: Stirred batch and fixed bed analysis. The Canadian Journal of Chemical Engineering, 95(6), 1164–1170.CrossRefGoogle Scholar
  11. Huang, H. Y., Yang, R. T., Chinn, D., & Munson, C. L. (2003). Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial and Engineering Chemistry Research, 42(12), 2427–2433.CrossRefGoogle Scholar
  12. Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118(1–2), 83–98.CrossRefGoogle Scholar
  13. Lee, H., Shim, E., Yun, H.-S., Park, Y.-T., Kim, D., Ji, M.-K., et al. (2016). Biosorption of Cu(II) by immobilized microalgae using silica: Kinetic, equilibrium, and thermodynamic study. Environmental Science and Pollution Research, 23(2), 1025–1034.CrossRefGoogle Scholar
  14. Li, Y. H., Liu, F. Q., Xia, B., Du, Q. J., Zhang, P., Wang, D. C., et al. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1–3), 876–880.CrossRefGoogle Scholar
  15. Li, Y. H., Xia, B., Zhao, Q. S., Liu, F. Q., Zhang, P., Du, Q. J., et al. (2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. Journal of Environmental Sciences, 23(3), 404–411.CrossRefGoogle Scholar
  16. Lim, S.-F., Zheng, Y.-M., Zou, S.-W., & Chen, J. P. (2008). Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study. Environmental Science and Technology, 42(7), 2551–2556.CrossRefGoogle Scholar
  17. Lim, S.-F., Zheng, Y.-M., Zou, S.-W., & Chen, J. P. (2009a). Removal of copper by calcium alginate encapsulated magnetic sorbent. Chemical Engineering Journal, 152(2–3), 509–513.CrossRefGoogle Scholar
  18. Lim, S.-F., Zheng, Y.-M., Zou, S.-W., & Chen, J. P. (2009b). Uptake of arsenate by an alginate-encapsulated magnetic sorbent: Process performance and characterization of adsorption chemistry. Journal of Colloid and Interface Science, 333(1), 33–39.CrossRefGoogle Scholar
  19. Mckay, G. B. H. S., Blair, H. S., & Gardner, J. R. (1982). Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 27(8), 3043–3057.CrossRefGoogle Scholar
  20. Mohammed, N., Grishkewich, N., Berry, R. M., & Tam, K. C. (2015). Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose, 22(6), 3725–3738.CrossRefGoogle Scholar
  21. Moral, C. K., & Yildiz, M. (2016). Alginate production from alternative carbon sources and use of polymer based adsorbent in heavy metal removal. International Journal of Polymer Science. Scholar
  22. Ngah, W. S. W., Endud, C. S., & Mayanar, R. (2002). Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive & Functional Polymers, 50(2), 181–190.CrossRefGoogle Scholar
  23. Ngah, W. S. W., & Fatinathan, S. (2008). Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chemical Engineering Journal, 143(1–3), 62–72.CrossRefGoogle Scholar
  24. Ngah, W. S. W., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), 3935–3948.CrossRefGoogle Scholar
  25. Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446–1456.CrossRefGoogle Scholar
  26. Ngomsik, A.-F., Bee, A., Siaugue, J.-M., Talbot, D., Cabuil, V., & Cote, G. (2009). Co(II) removal by magnetic alginate beads containing Cyanex 272 (R). Journal of Hazardous Materials, 166(2–3), 1043–1049.CrossRefGoogle Scholar
  27. Pandey, S., & Tiwari, S. (2015). Facile approach to synthesize chitosan based composite-Characterization and cadmium(II) ion adsorption studies. Carbohydrate Polymers, 134, 646–656.CrossRefGoogle Scholar
  28. Papageorgiou, S. K., Kouvelos, E. P., & Katsaros, F. K. (2008). Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination, 224(1–3), 293–306.CrossRefGoogle Scholar
  29. Popuri, S. R., Vijaya, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100(1), 194–199.CrossRefGoogle Scholar
  30. Pyrzynska, K., & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 362(1–3), 102–109.Google Scholar
  31. Rocher, V., Siaugue, J.-M., Cabuil, V., & Bee, A. (2008). Removal of organic dyes by magnetic alginate beads. Water Research, 42(4–5), 1290–1298.CrossRefGoogle Scholar
  32. Salisu, A., Sanagi, M. M., Abu Naim, A., Abd Karim, K. J., Ibrahim, W. A. W., & Abdulganiyu, U. (2016). Alginate graft polyacrylonitrile beads for the removal of lead from aqueous solutions. Polymer Bulletin, 73(2), 519–537.CrossRefGoogle Scholar
  33. Shao, M. F., Ning, F. Y., Zhao, J. W., Wei, M., Evans, D. G., & Duan, X. (2012). Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. Journal of the American Chemical Society, 134(2), 1071–1077.CrossRefGoogle Scholar
  34. Singh, S., Barick, K. C., & Bahadur, D. (2011). Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 192(3), 1539–1547.CrossRefGoogle Scholar
  35. Smitha, B., Sridhar, S., & Khan, A. A. (2005). Chitosan-sodium alginate polyion complexes as fuel cell membranes. European Polymer Journal, 41(8), 1859–1866.CrossRefGoogle Scholar
  36. Sun, X., Chen, J. H., Su, Z. B., Huang, Y. H., & Dong, X. F. (2016). Highly effective removal of Cu(II) by a novel 3-aminopropyltriethoxysilane functionalized polyethyleneimine/sodium alginate porous membrane adsorbent. Chemical Engineering Journal, 290, 1–11.CrossRefGoogle Scholar
  37. Veglio, F., Esposito, A., & Reverberi, A. P. (2002). Copper adsorption on calcium alginate beads: Equilibrium pH-related models. Hydrometallurgy, 65(1), 43–57.CrossRefGoogle Scholar
  38. Vijaya, Y., Popuri, S. R., Boddu, V. M., & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for removal of nickel (II) through adsorption. Carbohydrate Polymers, 72(2), 261–271.CrossRefGoogle Scholar
  39. Vijayalakshmi, K., Gomathi, T., Latha, S., Hajeeth, T., & Sudha, P. N. (2016). Removal of copper(II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International Journal of Biological Macromolecules, 82, 440–452.CrossRefGoogle Scholar
  40. Wang, Y. F., Luo, M., Xu, F., & Zhang, W. Z. (2015). Conversion of volcanic tephra to zeolites for calcium ion cross-linked alginate-zeolite composites for enhanced aqueous removal of Cu(II) ions. Water, Air, and Soil pollution, 226(9), 286.CrossRefGoogle Scholar
  41. Wu, D. B., Zhang, L., Wang, L., Zhu, B. H., & Fan, L. Y. (2011). Adsorption of lanthanum by magnetic alginate-chitosan gel beads. Journal of Chemical Technology and Biotechnology, 86(3), 345–352.CrossRefGoogle Scholar
  42. Yalcin, S., Apak, R., & Boz, I. (2015). Enhanced copper(II) biosorption on SiO2-alginate gel composite: A mechanistic study with surface characterization. Korean Journal of Chemical Engineering, 32(10), 2116–2123.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Hu-Chun Tao
    • 1
  • Shuo Li
    • 1
  • Li-Juan Zhang
    • 1
  • Yi-Zhen Chen
    • 1
  • Li-Ping Deng
    • 1
  1. 1.Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and EnergyPeking University Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations