Skip to main content

Advertisement

Log in

Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The main purpose of this study was to evaluate the water quality of the Karoon river, which is a main river in Iran country. For this purpose, hydrochemical analyses of a database that maintained by the Water Resources Authority of Khuzestan Province, Iran’s Ministry of Energy, were carried out. These data were compared with the maximum permissible limit values recommended by World Health Organization and Food and Agriculture Organization water standards for drinking and agricultural purposes, respectively. Also in this regard, multiple indices of water quality were utilized. However, not all indices gave similar rankings for water quality. According to the USSL diagram and Kelly ratio, Karoon’s water quality is not suitable for irrigation purposes due to high salinity and moderate alkalinity. However, the results of the magnesium hazard analysis suggested that water quality for irrigation is acceptable. A Piper diagram illustrated that the most dominant water types during the 15 years of the study were Na–Cl and Na–SO4. The mineral saturation index also indicated that Na–Cl is the dominant water type. The water quality for drinking purpose was evaluated using a Schoeller diagram and water quality index (WQI). According to the computed WQI ranging from 111.9 to 194.0, the Karoon’s water in the Khuzestan plain can be categorized as “poor water” for drinking purposes. Based on hydrochemical characteristics, years 2000–2007 and 2008–2014 were categorized into two clusters illustrating a decline in water quality between the two time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abboud, I. A. (2018). Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0064-x.

    Article  Google Scholar 

  • Alavi, N., Zaree, E., Hassani, M., Babaei, A. A., Goudarzi, G., Yari, A. R., et al. (2016). Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination and Water Treatment, 57(50), 23686–23697.

    Article  Google Scholar 

  • Aminiyan, M. M., Aminiyan, F. M., & Heydariyan, A. (2016a). Study on hydrochemical characterization and annual changes of surface water quality for agricultural and drinking purposes in semi-arid area. Sustainable Water Resources Management, 2(4), 473–487.

    Article  Google Scholar 

  • Aminiyan, M. M., Aminiyan, F. M., Heydariyan, A., & Sadikhani, M. R. (2016b). The assessment of groundwater geochemistry of some wells in Rafsanjan plain, Iran. Eurasian Journal of Soil Science, 5(3), 221.

    Google Scholar 

  • Amiri, V., Nakhaei, M., Lak, R., & Kholghi, M. (2016). Assessment of seasonal groundwater quality and potential saltwater intrusion: A study case in Urmia coastal aquifer (NW Iran) using the groundwater quality index (GQI) and hydrochemical facies evolution diagram (HFE-D). Stochastic Environmental Research and Risk Assessment, 30(5), 1473–1484.

    Article  Google Scholar 

  • Apha, W. (2008). AWWA, 1998. Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Arumugam, K., & Elangovan, K. (2009). Hydrochemical characteristics and groundwater quality assessment in Tirupur region, Coimbatore district, Tamil Nadu, India. Environmental Geology, 58(7), 1509–1520.

    Article  CAS  Google Scholar 

  • Asonye, C., Okolie, N., Okenwa, E., & Iwuanyanwu, U. (2007). Some physico-chemical characteristics and heavy metal profiles of Nigerian rivers, streams and waterways. African Journal of Biotechnology, 6(5), 617–624.

    CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: FAO.

    Google Scholar 

  • Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma, 159(3–4), 390–398.

    Article  CAS  Google Scholar 

  • Belkhiri, L., Mouni, L., & Tiri, A. (2012). Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental Geochemistry and Health, 34(1), 1–13.

    Article  CAS  Google Scholar 

  • Cánovas, C. R., Olias, M., Vazquez-Suñé, E., Ayora, C., & Nieto, J. M. (2012). Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain). Science of the Total Environment, 416, 418–428.

    Article  CAS  Google Scholar 

  • Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 42(13), 3285–3304.

    Article  CAS  Google Scholar 

  • Choi, B.-Y., Yun, S.-T., Kim, K.-H., Choi, H.-S., Chae, G.-T., & Lee, P.-K. (2014). Geochemical modeling of CO2–water–rock interactions for two different hydrochemical types of CO2-rich springs in Kangwon District, Korea. Journal of Geochemical Exploration, 144, 49–62.

    Article  CAS  Google Scholar 

  • Chow, M., Shiah, F., Lai, C., Kuo, H., Wang, K., Lin, C., et al. (2016). Evaluation of surface water quality using multivariate statistical techniques: A case study of Fei-Tsui Reservoir basin, Taiwan. Environmental Earth Sciences, 75(1), 6.

    Article  CAS  Google Scholar 

  • Darvishi, G., Kootenaei, F. G., Ramezani, M., Lotfi, E., & Asgharnia, H. (2016). Comparative investigation of river water quality by OWQI, NSFWQI and Wilcox indexes (case study: The Talar River–IRAN). Archives of Environmental Protection, 42(1), 41–48.

    Article  Google Scholar 

  • Darwish, T., Atallah, T., El Moujabber, M., & Khatib, N. (2005). Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural Water Management, 78(1), 152–164.

    Article  Google Scholar 

  • Fagbote, E., Olanipekun, E., & Uyi, H. (2014). Water quality index of the ground water of bitumen deposit impacted farm settlements using entropy weighted method. International Journal of Environmental Science and Technology, 11(1), 127–138.

    Article  CAS  Google Scholar 

  • Fijani, E., Moghaddam, A. A., Tsai, F. T.-C., & Tayfur, G. (2017). Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran. Water Resources Management, 31(3), 765–780.

    Article  Google Scholar 

  • Herojeet, R., Rishi, M. S., Lata, R., & Sharma, R. (2016). Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management, 2(1), 39–53.

    Article  Google Scholar 

  • Holgate, L. C., Aitkenhead-Peterson, J. A., & Gentry, T. J. (2011). Irrigation water chemistry: Impact on microbial community composition and biogeochemical leaching under perennial ryegrass (Lolium perenne [L]). ISRN Ecology. https://doi.org/10.5402/2011/797910.

    Article  Google Scholar 

  • Hosseinifard, S. J., & Aminiyan, M. M. (2015). Hydrochemical characterization of groundwater quality for drinking and agricultural purposes: a case study in Rafsanjan plain, Iran. Water Quality, Exposure and Health, 7(4), 531–544.

    Article  CAS  Google Scholar 

  • Hosseinifard, J., Naghavi, H., Jalalian, A., & Eghbal, M. (2005). Physicochemical and mineralogical properties of selected soils in the Rafsanjan pistachio area, Iran. In The fourth international symposium on Pistachio and Almond (Vol. 95).

  • Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T., Stack, W. P., Kelly, V. R., et al. (2005). Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13517–13520.

    Article  CAS  Google Scholar 

  • Kelley, W. (1940). Permissible composition and concentration of irrigation water. In Proceedings of the American society of civil engineers (Vol. 66, pp. 607–613).

  • Kim, S. H., Choi, B.-Y., Lee, G., Yun, S.-T., & Kim, S.-O. (2017). Compositional data analysis and geochemical modeling of CO2–water–rock interactions in three provinces of Korea. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0057-9.

    Article  Google Scholar 

  • Malakooti, S. J., Shahhosseini, M., Ardejani, F. D., Tonkaboni, S. Z. S., & Noaparast, M. (2015). Hydrochemical characterisation of water quality in the Sarcheshmeh copper complex, SE Iran. Environmental Earth Sciences, 74(4), 3171–3190.

    Article  CAS  Google Scholar 

  • Mapoma, H. W. T., Xie, X., Liu, Y., Zhu, Y., Kawaye, F. P., & Kayira, T. M. (2017). Hydrochemistry and quality of groundwater in alluvial aquifer of Karonga, Malawi. Environmental Earth Sciences, 76(9), 335.

    Article  CAS  Google Scholar 

  • Mohseni-bandpey, A., Majlessi, M., & Kazempour, A. (2017). Evaluation of Golgol river water quality in Ilam province based on the National Sanitation Foundation Water Quality Index (NSFWQI). Journal of Health in the Field, 1(4), 45–53.

    Google Scholar 

  • Mostafaei, A. (2014). Application of multivariate statistical methods and water-quality index to evaluation of water quality in the Kashkan River. Environmental Management, 53(4), 865–881.

    Article  Google Scholar 

  • Murray, R. S., & Grant, C. D. (2007). The impact of irrigation on soil structure. Land and Water Australia, 1–31. http://lwa.gov.au/products/pn20619. Accessed Sept 2017.

  • Naddafi, K., Honari, H., & Ahmadi, M. (2007). Water quality trend analysis for the Karoon River in Iran. Environmental Monitoring and Assessment, 134(1), 305–312.

    Article  CAS  Google Scholar 

  • Olumana Dinka, M. (2010). Analyzing the extents of Basaka Lake expansion and soil and water quality status of Matahara Irrigation Scheme, Awash Basin (Ethiopia).

  • Paliwal, K. V. (1972). Irrigation with saline water.

  • Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.

  • Pejman, A., Bidhendi, G. N., Karbassi, A., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6(3), 467–476.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.

    Article  Google Scholar 

  • Prasanth, S. S., Magesh, N., Jitheshlal, K., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2(3), 165–175.

    Article  CAS  Google Scholar 

  • Raghunath, H. M. (1987). Ground water. New Delhi: New Age International.

    Google Scholar 

  • Rakotonimaro, T. V., Neculita, C. M., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2017). Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. Environmental Science and Pollution Research, 24(1), 73–91.

    Article  CAS  Google Scholar 

  • Rasool, A., Xiao, T., Farooqi, A., Shafeeque, M., Liu, Y., Kamran, M. A., et al. (2017). Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 39(4), 847–863.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1969). Diagnosis and improvement of saline and alkali soils. Washington: United States Department of Agriculture.

    Google Scholar 

  • Rnjbar Jafarabadi, A., Masoodi, M., Sharifiniya, M., & Riyahi Bakhtiyari, A. (2016). Integrated river quality management by CCME WQI as an effective tool to characterize surface water source pollution (case study: Karun River, Iran). Pollution, 2(3), 313–330.

    Google Scholar 

  • Salarijazi, M., Akhond-Ali, A.-M., Adib, A., & Daneshkhah, A. (2012). Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, 7(32), 4540–4552.

    Article  Google Scholar 

  • Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. McGraw-Hill. http://thuvienso.vanlanguni.edu.vn/handle/VanLang_45/307. Accessed Aug 2017.

  • Schoeller, H. (1965). Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigations and development (pp. 54–83). Paris: UNESCO.

    Google Scholar 

  • Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584, 131–144.

    Article  CAS  Google Scholar 

  • Shah, M. C., Shilpkar, P. G., & Acharya, P. B. (2008). Ground water quality of Gandhinagar taluka, Gujarat, India. Journal of Chemistry, 5(3), 435–446.

    CAS  Google Scholar 

  • Shakeri, A., Ghoreyshinia, S., & Mehrabi, B. (2015). Surface and groundwater quality in Taftan geothermal field, SE Iran. Water Quality, Exposure and Health, 7(2), 205–218.

    Article  Google Scholar 

  • Sliva, L., & Williams, D. D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35(14), 3462–3472.

    Article  CAS  Google Scholar 

  • Steele, M., & Aitkenhead-Peterson, J. (2011). Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Science of the Total Environment, 409(16), 3021–3032.

    Article  CAS  Google Scholar 

  • Swistock, B. (2017). Interpreting irrigation water tests. PennState Extension. https://extension.psu.edu/interpreting-irrigation-water-tests. Accessed 29 March 2018.

  • Szabolcs, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II (pp. 803–812).

  • US Environmental Protection Agency (UEPA). (2017). Water Quality Standards Handbook. https://www.epa.gov/wqs-tech/water-quality-standards-handbook. Accessed 1 April 2018.

  • Vincy, M., Brilliant, R., & Pradeepkumar, A. (2015). Hydrochemical characterization and quality assessment of groundwater for drinking and irrigation purposes: A case study of Meenachil River Basin, Western Ghats, Kerala, India. Environmental Monitoring and Assessment, 187(1), 1.

    Article  CAS  Google Scholar 

  • Wanda, E., Monjerezi, M., Mwatseteza, J. F., & Kazembe, L. N. (2011). Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 36(14), 1197–1207.

    Article  Google Scholar 

  • World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Incorporating first addendum. http://www.apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf. Accessed 2 April 2018.

  • Yan, B., Xiao, C., Liang, X., & Wu, S. (2016). Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China. Environmental Geochemistry and Health, 38(1), 291–307.

    Article  CAS  Google Scholar 

  • Yousefi, S., Pourghasemi, H. R., Hooke, J., Navratil, O., & Kidová, A. (2016). Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology, 271, 55–64.

    Article  Google Scholar 

  • Zarei, H., & Bilondi, M. P. (2013). Factor analysis of chemical composition in the Karoon River basin, southwest of Iran. Applied Water Science, 3(4), 753–761.

    Article  CAS  Google Scholar 

  • Zhang, B., Song, X., Zhang, Y., Han, D., Tang, C., Yu, Y., et al. (2012). Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Research, 46(8), 2737–2748.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Khuzestan Water and Power Authority for providing the water quality parameters monitoring data for the Karoon river. And also thanks to Mr. Seyed Mahmoud Hashemi for his useful comments and revision from Arizona University, USA. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Mirzaei Aminiyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminiyan, M.M., Aitkenhead-Peterson, J. & Aminiyan, F.M. Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran. Environ Geochem Health 40, 2707–2728 (2018). https://doi.org/10.1007/s10653-018-0135-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0135-7

Keywords