Abstract
The main purpose of this study was to evaluate the water quality of the Karoon river, which is a main river in Iran country. For this purpose, hydrochemical analyses of a database that maintained by the Water Resources Authority of Khuzestan Province, Iran’s Ministry of Energy, were carried out. These data were compared with the maximum permissible limit values recommended by World Health Organization and Food and Agriculture Organization water standards for drinking and agricultural purposes, respectively. Also in this regard, multiple indices of water quality were utilized. However, not all indices gave similar rankings for water quality. According to the USSL diagram and Kelly ratio, Karoon’s water quality is not suitable for irrigation purposes due to high salinity and moderate alkalinity. However, the results of the magnesium hazard analysis suggested that water quality for irrigation is acceptable. A Piper diagram illustrated that the most dominant water types during the 15 years of the study were Na–Cl and Na–SO4. The mineral saturation index also indicated that Na–Cl is the dominant water type. The water quality for drinking purpose was evaluated using a Schoeller diagram and water quality index (WQI). According to the computed WQI ranging from 111.9 to 194.0, the Karoon’s water in the Khuzestan plain can be categorized as “poor water” for drinking purposes. Based on hydrochemical characteristics, years 2000–2007 and 2008–2014 were categorized into two clusters illustrating a decline in water quality between the two time periods.








Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abboud, I. A. (2018). Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0064-x.
Alavi, N., Zaree, E., Hassani, M., Babaei, A. A., Goudarzi, G., Yari, A. R., et al. (2016). Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination and Water Treatment, 57(50), 23686–23697.
Aminiyan, M. M., Aminiyan, F. M., & Heydariyan, A. (2016a). Study on hydrochemical characterization and annual changes of surface water quality for agricultural and drinking purposes in semi-arid area. Sustainable Water Resources Management, 2(4), 473–487.
Aminiyan, M. M., Aminiyan, F. M., Heydariyan, A., & Sadikhani, M. R. (2016b). The assessment of groundwater geochemistry of some wells in Rafsanjan plain, Iran. Eurasian Journal of Soil Science, 5(3), 221.
Amiri, V., Nakhaei, M., Lak, R., & Kholghi, M. (2016). Assessment of seasonal groundwater quality and potential saltwater intrusion: A study case in Urmia coastal aquifer (NW Iran) using the groundwater quality index (GQI) and hydrochemical facies evolution diagram (HFE-D). Stochastic Environmental Research and Risk Assessment, 30(5), 1473–1484.
Apha, W. (2008). AWWA, 1998. Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.
Arumugam, K., & Elangovan, K. (2009). Hydrochemical characteristics and groundwater quality assessment in Tirupur region, Coimbatore district, Tamil Nadu, India. Environmental Geology, 58(7), 1509–1520.
Asonye, C., Okolie, N., Okenwa, E., & Iwuanyanwu, U. (2007). Some physico-chemical characteristics and heavy metal profiles of Nigerian rivers, streams and waterways. African Journal of Biotechnology, 6(5), 617–624.
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29). Rome: FAO.
Belkhiri, L., Boudoukha, A., Mouni, L., & Baouz, T. (2010). Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma, 159(3–4), 390–398.
Belkhiri, L., Mouni, L., & Tiri, A. (2012). Water–rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environmental Geochemistry and Health, 34(1), 1–13.
Cánovas, C. R., Olias, M., Vazquez-Suñé, E., Ayora, C., & Nieto, J. M. (2012). Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain). Science of the Total Environment, 416, 418–428.
Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research, 42(13), 3285–3304.
Choi, B.-Y., Yun, S.-T., Kim, K.-H., Choi, H.-S., Chae, G.-T., & Lee, P.-K. (2014). Geochemical modeling of CO2–water–rock interactions for two different hydrochemical types of CO2-rich springs in Kangwon District, Korea. Journal of Geochemical Exploration, 144, 49–62.
Chow, M., Shiah, F., Lai, C., Kuo, H., Wang, K., Lin, C., et al. (2016). Evaluation of surface water quality using multivariate statistical techniques: A case study of Fei-Tsui Reservoir basin, Taiwan. Environmental Earth Sciences, 75(1), 6.
Darvishi, G., Kootenaei, F. G., Ramezani, M., Lotfi, E., & Asgharnia, H. (2016). Comparative investigation of river water quality by OWQI, NSFWQI and Wilcox indexes (case study: The Talar River–IRAN). Archives of Environmental Protection, 42(1), 41–48.
Darwish, T., Atallah, T., El Moujabber, M., & Khatib, N. (2005). Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural Water Management, 78(1), 152–164.
Fagbote, E., Olanipekun, E., & Uyi, H. (2014). Water quality index of the ground water of bitumen deposit impacted farm settlements using entropy weighted method. International Journal of Environmental Science and Technology, 11(1), 127–138.
Fijani, E., Moghaddam, A. A., Tsai, F. T.-C., & Tayfur, G. (2017). Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran. Water Resources Management, 31(3), 765–780.
Herojeet, R., Rishi, M. S., Lata, R., & Sharma, R. (2016). Application of environmetrics statistical models and water quality index for groundwater quality characterization of alluvial aquifer of Nalagarh Valley, Himachal Pradesh, India. Sustainable Water Resources Management, 2(1), 39–53.
Holgate, L. C., Aitkenhead-Peterson, J. A., & Gentry, T. J. (2011). Irrigation water chemistry: Impact on microbial community composition and biogeochemical leaching under perennial ryegrass (Lolium perenne [L]). ISRN Ecology. https://doi.org/10.5402/2011/797910.
Hosseinifard, S. J., & Aminiyan, M. M. (2015). Hydrochemical characterization of groundwater quality for drinking and agricultural purposes: a case study in Rafsanjan plain, Iran. Water Quality, Exposure and Health, 7(4), 531–544.
Hosseinifard, J., Naghavi, H., Jalalian, A., & Eghbal, M. (2005). Physicochemical and mineralogical properties of selected soils in the Rafsanjan pistachio area, Iran. In The fourth international symposium on Pistachio and Almond (Vol. 95).
Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T., Stack, W. P., Kelly, V. R., et al. (2005). Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13517–13520.
Kelley, W. (1940). Permissible composition and concentration of irrigation water. In Proceedings of the American society of civil engineers (Vol. 66, pp. 607–613).
Kim, S. H., Choi, B.-Y., Lee, G., Yun, S.-T., & Kim, S.-O. (2017). Compositional data analysis and geochemical modeling of CO2–water–rock interactions in three provinces of Korea. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0057-9.
Malakooti, S. J., Shahhosseini, M., Ardejani, F. D., Tonkaboni, S. Z. S., & Noaparast, M. (2015). Hydrochemical characterisation of water quality in the Sarcheshmeh copper complex, SE Iran. Environmental Earth Sciences, 74(4), 3171–3190.
Mapoma, H. W. T., Xie, X., Liu, Y., Zhu, Y., Kawaye, F. P., & Kayira, T. M. (2017). Hydrochemistry and quality of groundwater in alluvial aquifer of Karonga, Malawi. Environmental Earth Sciences, 76(9), 335.
Mohseni-bandpey, A., Majlessi, M., & Kazempour, A. (2017). Evaluation of Golgol river water quality in Ilam province based on the National Sanitation Foundation Water Quality Index (NSFWQI). Journal of Health in the Field, 1(4), 45–53.
Mostafaei, A. (2014). Application of multivariate statistical methods and water-quality index to evaluation of water quality in the Kashkan River. Environmental Management, 53(4), 865–881.
Murray, R. S., & Grant, C. D. (2007). The impact of irrigation on soil structure. Land and Water Australia, 1–31. http://lwa.gov.au/products/pn20619. Accessed Sept 2017.
Naddafi, K., Honari, H., & Ahmadi, M. (2007). Water quality trend analysis for the Karoon River in Iran. Environmental Monitoring and Assessment, 134(1), 305–312.
Olumana Dinka, M. (2010). Analyzing the extents of Basaka Lake expansion and soil and water quality status of Matahara Irrigation Scheme, Awash Basin (Ethiopia).
Paliwal, K. V. (1972). Irrigation with saline water.
Parkhurst, D. L., & Appelo, C. (1999). User’s guide to PHREEQC (version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.
Pejman, A., Bidhendi, G. N., Karbassi, A., Mehrdadi, N., & Bidhendi, M. E. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6(3), 467–476.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928.
Prasanth, S. S., Magesh, N., Jitheshlal, K., Chandrasekar, N., & Gangadhar, K. (2012). Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2(3), 165–175.
Raghunath, H. M. (1987). Ground water. New Delhi: New Age International.
Rakotonimaro, T. V., Neculita, C. M., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2017). Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. Environmental Science and Pollution Research, 24(1), 73–91.
Rasool, A., Xiao, T., Farooqi, A., Shafeeque, M., Liu, Y., Kamran, M. A., et al. (2017). Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 39(4), 847–863.
Richards, L. A. (1969). Diagnosis and improvement of saline and alkali soils. Washington: United States Department of Agriculture.
Rnjbar Jafarabadi, A., Masoodi, M., Sharifiniya, M., & Riyahi Bakhtiyari, A. (2016). Integrated river quality management by CCME WQI as an effective tool to characterize surface water source pollution (case study: Karun River, Iran). Pollution, 2(3), 313–330.
Salarijazi, M., Akhond-Ali, A.-M., Adib, A., & Daneshkhah, A. (2012). Trend and change-point detection for the annual stream-flow series of the Karun River at the Ahvaz hydrometric station. African Journal of Agricultural Research, 7(32), 4540–4552.
Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science. McGraw-Hill. http://thuvienso.vanlanguni.edu.vn/handle/VanLang_45/307. Accessed Aug 2017.
Schoeller, H. (1965). Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigations and development (pp. 54–83). Paris: UNESCO.
Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment, 584, 131–144.
Shah, M. C., Shilpkar, P. G., & Acharya, P. B. (2008). Ground water quality of Gandhinagar taluka, Gujarat, India. Journal of Chemistry, 5(3), 435–446.
Shakeri, A., Ghoreyshinia, S., & Mehrabi, B. (2015). Surface and groundwater quality in Taftan geothermal field, SE Iran. Water Quality, Exposure and Health, 7(2), 205–218.
Sliva, L., & Williams, D. D. (2001). Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Research, 35(14), 3462–3472.
Steele, M., & Aitkenhead-Peterson, J. (2011). Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Science of the Total Environment, 409(16), 3021–3032.
Swistock, B. (2017). Interpreting irrigation water tests. PennState Extension. https://extension.psu.edu/interpreting-irrigation-water-tests. Accessed 29 March 2018.
Szabolcs, I., & Darab, C. (1964). The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Trans, II (pp. 803–812).
US Environmental Protection Agency (UEPA). (2017). Water Quality Standards Handbook. https://www.epa.gov/wqs-tech/water-quality-standards-handbook. Accessed 1 April 2018.
Vincy, M., Brilliant, R., & Pradeepkumar, A. (2015). Hydrochemical characterization and quality assessment of groundwater for drinking and irrigation purposes: A case study of Meenachil River Basin, Western Ghats, Kerala, India. Environmental Monitoring and Assessment, 187(1), 1.
Wanda, E., Monjerezi, M., Mwatseteza, J. F., & Kazembe, L. N. (2011). Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi. Physics and Chemistry of the Earth, Parts A/B/C, 36(14), 1197–1207.
World Health Organization (WHO). (2017). Guidelines for drinking-water quality: Incorporating first addendum. http://www.apps.who.int/iris/bitstream/10665/254637/1/9789241549950-eng.pdf. Accessed 2 April 2018.
Yan, B., Xiao, C., Liang, X., & Wu, S. (2016). Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China. Environmental Geochemistry and Health, 38(1), 291–307.
Yousefi, S., Pourghasemi, H. R., Hooke, J., Navratil, O., & Kidová, A. (2016). Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology, 271, 55–64.
Zarei, H., & Bilondi, M. P. (2013). Factor analysis of chemical composition in the Karoon River basin, southwest of Iran. Applied Water Science, 3(4), 753–761.
Zhang, B., Song, X., Zhang, Y., Han, D., Tang, C., Yu, Y., et al. (2012). Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Research, 46(8), 2737–2748.
Acknowledgements
The authors wish to thank Khuzestan Water and Power Authority for providing the water quality parameters monitoring data for the Karoon river. And also thanks to Mr. Seyed Mahmoud Hashemi for his useful comments and revision from Arizona University, USA. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Aminiyan, M.M., Aitkenhead-Peterson, J. & Aminiyan, F.M. Evaluation of multiple water quality indices for drinking and irrigation purposes for the Karoon river, Iran. Environ Geochem Health 40, 2707–2728 (2018). https://doi.org/10.1007/s10653-018-0135-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-018-0135-7

