Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India

Abstract

Hooghly–Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have investigated the distribution of Co, Cr, Cu, Fe and Zn along with sediment properties at six locations [Shamshernagar (S1), Kumirmari (S2 and S3), Petuaghat (S4), Tapoban (S5) and Chemaguri (S6)] in the Hooghly estuary and reclaimed islands of the Sundarbans for assessing the degree of contamination and potential ecological risks. Enrichment factor values (0.9–21.6) show enrichment of Co, Cu and Zn in the intertidal sediments considering all sampling locations and depth profiles. Geo-accumulation index values irrespective of sampling locations and depth revealed that Co and Cu are under class II and class III level indicating a moderate contamination of sediments. The pollution load index was higher than unity (1.6–2.1), and Co and Cu were the major contributors to the sediment pollution followed by Zn, Cr and Fe with the minimum values at S1 and the maximum values at S5. The sediments of the Hooghly–Matla estuarine region (S4, S5 and S6) showed considerable ecological risks, when compared with effect range low/effect range median and threshold effect level/probable effect level values. The variation in the distribution of the studied elements may be due to variation in discharge pattern and exposure to industrial effluent and domestic sewage, storm water and agricultural run-off and fluvial dynamics of the region. The study illuminates the necessity for the proper management of vulnerable coastal estuarine ecosystem by stringent pollution control measures along with regular monitoring and checking program.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdo, M. H., & Sayed, M. F. (2009). Profile of some trace elements in the water-surficial sediment of Wadi El-Natrun depresion lakes, Egypt. Global Journal of Environmental Research, 3(2), 76–81.

    CAS  Google Scholar 

  2. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.

    Article  CAS  Google Scholar 

  3. Achyuthan, H., Richard Mohan, D., Srinivasalu, S., & Selvaraj, K. (2002). Trace metals concentrations in the sediment cores of estuary and tidal zones between Chennai and Pondicherry, along the east coast of India. Indian Journal of Marine Science, 31, 141–149.

    CAS  Google Scholar 

  4. Acosta, J. A., Martínez-Martínez, S., Faz, A., & Arocena, J. (2011). Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma, 161(1), 30–42.

    Article  CAS  Google Scholar 

  5. Ahmadpoor, P., Navvi, A. M., Abdu, A., Abdul-Hamid, H., Singh, D. K., Hassan, A., et al. (2010). Uptake of heavy metals by Jatropa curcas L. planted in soils containing sewage sludge. American Journal of Applied Sciences, 7, 1291–1299.

    Article  Google Scholar 

  6. Antoniadis, V., Golia, E. E., Shaheen, S. M., & Rinklebe, J. (2017a). Bioavailability and health risk assessment of potentially toxic elements in Thriassio Plain, near Athens, Greece. Environmental Geochemistry and Health, 39, 319–330.

    Article  CAS  Google Scholar 

  7. Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017b). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth Science Review, 171, 621.

    Article  CAS  Google Scholar 

  8. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017c). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, 192–200.

    Article  CAS  Google Scholar 

  9. Bakshi, M., Ram, S. S., Ghosh, S., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2017). Micro-spatial variation of elemental distribution in estuarine sediment and their accumulation in mangroves of Indian Sundarban. Environmental Monitoring and Assessment, 189(5), 221.

    Article  CAS  Google Scholar 

  10. Banerjee, K., Senthilkumar, B., Purvaja, R., & Ramesh, R. (2012). Sedimentation and trace metal distribution in selected locations of Sundarbans mangroves and Hooghly estuary, Northeast coast of India. Environmental Geochemistry and Health, 34, 27–42.

    Article  CAS  Google Scholar 

  11. Bastami, K. D., Bagheri, H., Haghparast, S., Soltani, F., Hamzehpoor, A., & Bastami, M. D. (2012). Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Marine Pollution Bulletin, 64, 2877–2884.

    Article  CAS  Google Scholar 

  12. Bastami, K. D., Bagheri, H., Kheirabadi, V., Ghorbanzadeh Zaferani, G., Teymori, M. B., Hamzehpoor, A., et al. (2014). Distribution and ecological risk assessment of heavy metals in surface sediments along southeast coast of the Caspian Sea. Marine Pollution Bulletin, 81, 262–267.

    Article  CAS  Google Scholar 

  13. Bayen, S. (2012). Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: A review. Environment International, 48, 84–101.

    Article  CAS  Google Scholar 

  14. Bhattacharya, A., & Das, G. K. (2002). Dynamic geomorphic environment of Indian Sundarbans. In S. P. Basu (Ed.), Changing environmental scenario of the Indian subcontinent (pp. 284–298). Kolkata: Acb Publication.

    Google Scholar 

  15. Bhuiyan, M. A. H., Parvez, L., Islam, M., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Material, 173, 384–392.

    Article  CAS  Google Scholar 

  16. Birch, G. F. (2017). Determination of sediment metal background concentrations and enrichment in marine environments—A critical review. Science of the Total Environment, 580, 813–831.

    Article  CAS  Google Scholar 

  17. Birch, G. F., Chang, C. H., Lee, J. H., & Churchill, L. J. (2013). The use of vintage surficial sediment data and sedimentary cores to determine past and future trends inestuarine metal contamination (Sydney estuary, Australia). Science of Total Environment, 454–455, 542–561.

    Article  CAS  Google Scholar 

  18. Birch, G., Nath, B., & Chaudhuri, P. (2015). Effectiveness of remediation of metal-contaminated mangrove sediments (Sydney estuary, Australia). Environmental Science and Pollution Research, 22(8), 6185–6197.

    Article  CAS  Google Scholar 

  19. Bothner, M. H., Buchholtzten, B. M., & Manheim, F. T. (1998). Metal concentrations in surface sediments of Boston Harbor changes with time. Marine Environmental Research, 45, 17–155.

    Article  Google Scholar 

  20. BS EN 13656. (2002). Characterization of waste. Microwave assisted digestion with hydrofluoric (HF), nitric (HNO3), and hydrochloric (HCl) acid mixture for subsequent determination of elements. ISBN: 0580406253. London, UK: British Standard Institution.

  21. Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado estuary sediment: an index analysis approach. Ecological Indicator, 5, 151–169.

    Article  CAS  Google Scholar 

  22. Carvalho, F. P., Villeneuve, J. P., Cattini, C., Rendon, J., & de Oliveira, J. M. (2009). Ecological risk assessment of PCBs and other organic contaminant residues in Laguna de Terminos, Mexico. Ecotoxicology, 18, 403–416.

    Article  CAS  Google Scholar 

  23. Chakraborty, P., Ramteke, D., Chakraborty, S., & Nath, B. N. (2014). Changes in metal contamination levels in estuarine sediments around India–an assessment. Marine pollution bulletin, 78(1–2), 15–25.

    Article  CAS  Google Scholar 

  24. Chandra Mouli, P., Venkata Mohan, S., Balaram, V., Praveen, K., & Jayarama, R. S. (2006). A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmospheric Environment, 40(1), 136–146.

    Article  CAS  Google Scholar 

  25. Chapman, P. M., Wang, F., & Caeiro, S. S. (2013). Assessing and managing sediment contamination in transitional waters. Environment International, 55, 71–91.

    Article  CAS  Google Scholar 

  26. Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.

    Article  CAS  Google Scholar 

  27. Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., & Satpathy, K. K. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  28. Chaudhuri, P., Nath, B., & Birch, G. (2014). Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine Pollution Bulletin, 79(1–2), 284–292.

    Article  CAS  Google Scholar 

  29. Cheng, Y., Liu, Y., Li, F. X., Gao, J. H., Liu, J. W., & Zhang, L. (2011). Comparative study of enrichment features and potential ecological risks of heavy metals in sediments of the Yalu River estuary and its adjacent shallow sea area. Research Journal of Environmental Sciences, 24, 516–525.

    CAS  Google Scholar 

  30. Coleman, D. C., Crossley, D. A., & Hendrix, P. F. (2004). Fundamentals of soil ecology. London: Academic press.

    Google Scholar 

  31. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14), 2919–2940.

    Article  CAS  Google Scholar 

  32. Defew, L. H., Mair, J. M., Mair, J. M., & Guzman, H. M. (2005). An assessment of metal contamination in mangrove sediments and leaves from Punta Mala Bay, Pacific Panama. Marine Pollution Bulletin, 50, 547–552.

    Article  CAS  Google Scholar 

  33. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985.

    Article  CAS  Google Scholar 

  34. Du Laing, G., Van Ryckegem, G., Tack, F. M. G., & Verloo, M. G. (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 63, 1815–1823.

    Article  CAS  Google Scholar 

  35. FAO Forestry. (2010). Global forest resources assessment. Rome, Italy: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  36. Flemming, B. W. (2000). A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Research, 20, 1125–1137.

    Article  Google Scholar 

  37. Fukushima, K., Saino, T., & Kodama, Y. (1992). Trace metal contamination in Tokyo Bay, Japan. Science of Total Environment, 125, 373–389.

    Article  CAS  Google Scholar 

  38. Ghosh, S., Bakshi, M., Bhattacharya, S., Nath, B., & Chaudhuri, P. (2015). A review of threats and vulnerabilities to mangrove habitats: with special emphasis on East Coast of India. Journal of Earth Science and Climate Change, 6, 4. https://doi.org/10.4172/2157-7617.1000270.

    Article  Google Scholar 

  39. Ghosh, S., Ram, S. S., Bakshi, M., Chakraborty, A., Sudarshan, M., & Chaudhuri, P. (2016). Vertical and horizontal variation of elemental contamination in sediments of Hooghly Estuary, India. Marine Pollution Bulletin, 109, 539–549.

    Article  CAS  Google Scholar 

  40. Gomes, P., Valente, T., Braga, M. A. S., Grande, J. A., & De la Torre, M. L. (2016). Enrichment of trace elements in the clay size fraction of mining soils. Environmental Science and Pollution Research, 23(7), 6039–6045.

    Article  CAS  Google Scholar 

  41. Gopal, B., & Chauhan, M. (2006). Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic Science, 68, 338–354.

    Article  Google Scholar 

  42. Hakanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  43. Hasan, A. B., Kabir, S., Selim Reza, A. H. M., Zaman, M. N., Ahsan, A., & Rashid, M. (2013). Enrichment factor and geo-accumulation index of trace metals in sediments of the ship breaking area of Sitakund Upazilla (Bhatiary–Kumira), Chittagong, Bangladesh. Journal of Geochemical Exploration, 125, 130–137.

    Article  CAS  Google Scholar 

  44. Hoodaji, M., Tahmourespour, A., & Amini, H. (2010). Assessment of copper, cobalt and zinc contaminations in soils and plants of industrial area in Esfahan city (in Iran). Environmental Earth Sciences, 61, 1353–1360.

    Article  CAS  Google Scholar 

  45. Hussain, Z., & Acharya, G. (Eds.). (1994). Mangroves of the Sundarbans (Vol. 2). Gland, Bangladesh: World Conservation Union.

    Google Scholar 

  46. Islam, M. S., Ahmed, M. K., & Al-Mamun, M. H. (2015a). Metal speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment, 187, 288–303.

    Article  CAS  Google Scholar 

  47. Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Masunaga, S. (2015b). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of Total Environment, 512–513, 94–102.

    Article  CAS  Google Scholar 

  48. Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstron-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique. Environmental Pollution, 145(1), 245–257.

    Article  CAS  Google Scholar 

  49. Jones, B., & Turki, A. (1997). Distribution and speciation of heavy metals in surficial sediments from Tees estuary, northeast England. Marine Pollution Bulletin, 34, 768–779.

    Article  CAS  Google Scholar 

  50. Karar, K., & Gupta, A. K. (2006). Seasonal variations and chemical characterization of ambient PM10 at residential and industrial sites of an urban region of Kolkata (Calcutta), India. Atmospheric Research, 81(1), 36–53.

    Article  CAS  Google Scholar 

  51. Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481.

    Article  CAS  Google Scholar 

  52. Konert, M., & Vandenberghe, J. (1997). Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology, 44, 523–535.

    Article  CAS  Google Scholar 

  53. Kumar, A., & Ramanathan, A. L. (2015). Speciation of selected trace metals (Fe, Mn, Cu and Zn) with depth in the sediments of Sundarban mangroves: India and Bangladesh. Journal of Soils Sediments, 15, 2476–2486.

    Article  CAS  Google Scholar 

  54. Kumar, A., Ramanathan, A. L., Prasad, M. B. K., Datta, D., Kumar, M., & Sappal, S. M. (2016). Distribution, enrichment, and potential toxicity of trace metals in the surface sediments of Sundarban mangrove ecosystem, Bangladesh: a baseline study before Sundarban oil spill of December, 2014. Environmental Science and Pollution Research, 23(9), 8985–8999.

    Article  CAS  Google Scholar 

  55. Lichtfouse, E., Schwarzbauer, J., & Robert, D. (2005). Environmental chemistry, green chemistry and pollutants in ecosystems (p. 780p). New York: Springer.

    Google Scholar 

  56. Long, E. R., & MacDonald, D. D. (1998). Recommended uses of empirically derived, sediment quality guidelines for marine and estuarine ecosystems. Human and Ecological Risk Assessment, 4(5), 1019–1039.

    Article  Google Scholar 

  57. Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Article  Google Scholar 

  58. Luo, W., Lu, Y., Wang, T., Hu, W., Jiao, W., Naile, J. E., et al. (2010). Ecological risk assessment of arsenic and metals in sediments of coastal areas of northern Bohai and Yellow Seas, China. Ambio, 39, 367–375.

    Article  CAS  Google Scholar 

  59. Lützow, M. V., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., et al. (2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. European Journal of Soil Science, 57(4), 426–445.

    Article  CAS  Google Scholar 

  60. Maaman, M., Saddik, M., Maaman, M., Chaibi, M., Assobhei, O., & Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Marocco. Ecological Indicators, 48, 616–626.

    Article  CAS  Google Scholar 

  61. Magesh, N. S., Chandrasekar, N., Krishna Kumar, S., & Glory, M. (2013). Trace element contamination in the estuarine sediments along Tuticorin coast–Gulf of Mannar, southeast coast of India. Marine Pollution Bulletin, 73, 355–361.

    Article  CAS  Google Scholar 

  62. Majumdar, S., Ram, S. S., Jana, N. K., Santra, S., Chakraborty, A., & Sudarshan, M. (2009). Accumulation of minor and trace elements in Lichens in and around Kolkata, India: An application of X-ray fluorescence technique to air pollution monitoring. X-Ray Spectrometry, 38(6), 469–473.

    Article  CAS  Google Scholar 

  63. Malpas, J., Duzgoren-Aydin, N. S., & Aydin, A. (2001). Behavior of chemical elements during weathering of pyroclastic rocks, Hong Kong. Environment International, 26, 359–368.

    Article  CAS  Google Scholar 

  64. Marchand, C., Lallier-Verges, E., Baltzer, F., Alberic, P., Cossa, D., & Baillif, P. (2006). Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana. Marine Chemistry, 98, 1–17.

    Article  CAS  Google Scholar 

  65. Martínez-Martínez, S., Faz, Á., Acosta, J. A., Carmona, D. M., Zornoza, R., Büyükkiliç, A., & Kabas, S. (2010). Heavy metals distribution in soil particle size fractions from a mining area in the southeast of Spain. In Proceedings of the 19th world congress of soil science: Soil solutions for a changing world, Brisbane, Australia, 16 August 2010. Symposium 3.5. 2 Risk assessment and risk based remediation (pp. 30–33). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur.

  66. Massolo, S., Bignasca, A., Sarkar, S. K., Chatterjee, M., Bhattacharya, B. D., & Alam, A. (2012). Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India). Environmental Monitoring and Assessment, 184, 7561–7577.

    Article  CAS  Google Scholar 

  67. Mitra, A., Barua, P., Zaman, S., & Banerjee, K. (2012). Analysis of trace metals in commercially important crustaceans collected from UNESCO protected world heritage site of Indian Sundarbans. Turkish Journal of Fisheries and Aquatic Sciences, 12, 53–66.

    Article  Google Scholar 

  68. Mitra, A., Mondal, K., & Banerjee, K. (2010). Concentration of heavy metals in fish juveniles of Gangetic Delta of West Bengal, India. Research Journal of Fisheries and Hydrobiology, 5(1), 21–26.

    Google Scholar 

  69. Mounier, S., Lacerda, L. D., Marins, R. V., & Bemaim, J. (2001). Copper and mercury complexing capacity of organic matter from a mangrove mud flat environment, Sepetiba bay, Brazil. Bulletin of Environmental Contamination and Toxicology, 67, 519–525.

    Article  CAS  Google Scholar 

  70. Müller, G. (1969). Index of geoaccumulation in the sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  71. Nath, B., Birch, G., & Chaudhuri, P. (2013). Trace metal biogeochemistry in mangrove ecosystems: A comparative assessment of acidified (by acid sulfate soils) and non-acidified sites. Science of the Total Environment, 463, 667–674.

    Article  CAS  Google Scholar 

  72. Nath, B., Birch, G., & Chaudhuri, P. (2014a). Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney estuary: The potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination. Science of the Total Environment, 472, 1010–1022.

    Article  CAS  Google Scholar 

  73. Nath, B., Chaudhuri, P., & Birch, G. (2014b). Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney estuary, Australia. Ecotoxicology and Environmental Safety, 107, 284–290.

    Article  CAS  Google Scholar 

  74. Oueslati, W., Zaaboub, N., Helali, M. A., Ennouri, R., Martins, M. V. A., Dhib, A., et al. (2017). Trace element accumulation and elutriate toxicity in surface sediment in northern Tunisia (Tunis Gulf, southern Mediterranean). Marine Pollution Bulletin, 116, 216–225.

    Article  CAS  Google Scholar 

  75. Pan, J., Pan, J. F., & Wang, M. (2014). Trace elements distribution and ecological risk assessment of seawater and sediments from Dingzi Bay, Shandong Peninsula, North China. Marine Pollution Bulletin, 89, 427–434.

    Article  CAS  Google Scholar 

  76. Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoǧlu, M. (2004). Ecological risk assessment using trace elements from surface sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953.

    Article  CAS  Google Scholar 

  77. Rakshit, D., Sarkar, S. K., Bhattacharya, B. D., Jonathan, M. P., Biswas, J. K., Mondal, P., et al. (2015). Human-induced ecological changes in western part of Indian Sundarban megadelta: A threat to ecosystem stability. Marine Pollution Bulletin, 99(1–2), 186–194.

    Article  CAS  Google Scholar 

  78. Ramanathan, A. L., Subramanian, V., Ramesh, R., Chidambaram, S., & James, A. (1999). Environmental geochemistry of the Pichavaram mangrove ecosystem (tropical), southeast coast of India. Environmental Geology, 37(3), 223–233.

    Article  CAS  Google Scholar 

  79. Ramesh, R., Ramanathan, A. L., James, R. A., Subramanian, V., Jacobsen, S. B., & Holland, H. D. (1999). Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiologia, 397, 89–99.

    Article  CAS  Google Scholar 

  80. Rinklebe, J., Knox, A. S., & Paller, M. (2017). Trace elements in waterlogged soils and sediments. Boca Raton: CRC Press.

    Google Scholar 

  81. Rinklebe, J., & Shaheen, S. M. (2015). Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil. Ecotoxicology and Environmental Safety, 119, 58–65.

    Article  CAS  Google Scholar 

  82. Rinklebe, J., Shaheen, S. M., Schröter, F., & Rennert, T. (2016). Exploiting biogeochemical and spectroscopic techniques to assess the geochemical distribution and release dynamics of chromium and lead in a contaminated floodplain soil. Chemosphere, 150, 390–397.

    Article  CAS  Google Scholar 

  83. Rogers, K. G., Goodbred, S. L., Jr., & Mondal, D. R. (2013). Monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges–Brahmaputra delta plain. Estuarine Coastal Shelf Science, 131, 297–309.

    Article  Google Scholar 

  84. Rönnbäck, P., Kautsky, N., Pihl, L., Troell, M., Söderqvist, T., & Håkan, W. (2007). Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts. Ambio, 36, 534–544.

    Article  Google Scholar 

  85. Sadhuram, Y., Sarma, V. V., Ramana Murthy, T. V., & Prabhakar Rao, B. (2005). Seasonal variability of the physicochemical characteristics of the Haldia channel Hooghly estuary. Journal of Earth System Science, 114, 37–49.

    Article  CAS  Google Scholar 

  86. Saha, M., Sarkar, S. K., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sundarban mangrove wetland, northeast India. Environment International, 32, 203–207.

    Article  CAS  Google Scholar 

  87. Saidy, A. R., Smernik, R. J., Baldock, J. A., Kaiser, K., Sanderman, J., & Macdonald, L. M. (2012). Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma, 173, 104–110.

    Article  CAS  Google Scholar 

  88. Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugli river, northeast India and their environmental implications. Environment International, 30, 1089–1098.

    Article  CAS  Google Scholar 

  89. Shaheen, S. M., Kwon, E. E., Biswas, J. K., Tack, F. M., Ok, Y. S., & Rinklebe, J. (2017a). Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–563.

    Article  CAS  Google Scholar 

  90. Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017b). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387.

    Article  CAS  Google Scholar 

  91. Shaheen, S. M., Rinklebe, J., Frohne, T., White, J., & Delaune, R. D. (2014a). Biogeochemical factors governing Co, Ni, Se, and V dynamics in periodically flooded Egyptian north nile delta rice soils. Soil Science Society of America Journal, 78(3), 1065–1078.

    Article  CAS  Google Scholar 

  92. Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014b). Temporal dynamics of soluble Cd Co, Cu, Ni, and Zn and their controlling factor in a contaminated floodplain soil using undisturbed groundwater lysimeter. Environmental Pollution, 191, 223–231.

    Article  CAS  Google Scholar 

  93. Shaheen, S. M., Rinklebe, J., Frohne, T., White, J. R., & DeLaune, R. D. (2016). Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere, 150, 740–748.

    Article  CAS  Google Scholar 

  94. Sharifi, Z., Hossaini, S. M., & Renella, G. (2016). Risk assessment for sediment and stream water polluted by heavy metals released by a municipal solid waste composting plant. Journal of Geochemical Exploration, 169, 202–210.

    Article  CAS  Google Scholar 

  95. Sparks, D. L., Fendorf, S. E., Toner, C. V., & Carski, T. H. (1996). Kinetic methods and measurements (No. methodsofsoilan3, pp. 1275–1307). Soil Science Society of America, American Society of Agronomy.

  96. Stanley, D. J., & Hait, A. K. (2000). Holocene depositional patterns, neotectonics and Sundarban mangroves in the western Ganges–Brahmaputra delta. Journal of Coastal Research, 16, 26–39.

    Google Scholar 

  97. Subramanian, V. (1993). Phosphorus, silicon, and some trace contaminants in the Ganges estuary. Estuaries, 16, 453–458.

    Article  CAS  Google Scholar 

  98. Subramanian, V., Jha, P. K., & Van Grieken, R. (1988). Heavy metals in the Ganges estuary. Marine Pollution Bulletin, 19, 290–293.

    Article  CAS  Google Scholar 

  99. Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Applied Radiation and Isotopes, 69(10), 1466–1474.

    Article  CAS  Google Scholar 

  100. Tack, F. M. G., Verloo, M. G., Vanmechelen, L., & Van Ranst, E. (1997). Baseline concentration levels of trace elements as a function of clay and organic carbon contents in soils in Flanders (Belgium). Science of the Total Environment, 201(2), 113–123.

    Article  CAS  Google Scholar 

  101. Tahir, S., & Marschner, P. (2017). Clay addition to sandy soil—Influence of clay type and size on nutrient availability in sandy soils amended with residues differing in C/N ratio. Pedosphere, 27(2), 293–305.

    Article  Google Scholar 

  102. Tatone, L. M., Bilos, C., Skorupka, C. N., & Colombo, J. C. (2016). Comparative approach for trace metal risk evaluation in settling particles from the Uruguay River, Argentina: Enrichment factors, sediment quality guidelines and metal speciation. Environmental Earth Sciences, 75, 575. https://doi.org/10.1007/s12665-016-5265-6.

    Article  CAS  Google Scholar 

  103. Taylor, S., & McLennan, S. (1985). The continental crust: its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  104. Thomas, G., & Fernandez, T. (1997). Incidence of heavy metals in the mangrove flora and sediments in Kerala, India. Hydrobiologia, 352, 77–87.

    Article  CAS  Google Scholar 

  105. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  106. Udechukwu, B. E., Ismail, A., Zulkifli, Z. S., & Omar, H. (2015). Distribution, mobility, and pollution assessment of Cd, Cu, Ni, Pb, Zn, and Fe in intertidal surface sediments of Sg. Puloh mangrove estuary, Malaysia. Environmental Science Pollution and Research, 22, 4242–4255.

    Article  CAS  Google Scholar 

  107. Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chlorine and titration method. Soil Science, 37, 23–38.

    Google Scholar 

  108. Wang, Y., Yang, L., Kong, L., Liuc, E., Wang, L., & Zhu, J. (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. CATENA, 125, 200–205.

    Article  CAS  Google Scholar 

  109. Yusof, A. M., Rahaman, N. A., & Wood, A. K. H. (1994). The accumulation and distribution of trace metals in some localized marine species. Biological Trace Element Research, 239, 43–45.

    Google Scholar 

  110. Zeeshan, M., Murugadas, A., Ghaskadbi, S., Ramaswamy, B. R., & Akbarsha, M. A. (2017). Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity. Environmental Pollution, 224, 54–69.

    Article  CAS  Google Scholar 

  111. Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 64, 799–807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Scientific and Engineering Research Board (SR/FT/LS-155/2011 dated 25.04.2013), Department of Science and Technology, Govt. of India, for funding this research in University of Calcutta. We are also thankful to Science Academies’ of India (IASc-INSA-NASI) and Jawaharlal Nehru University, New Delhi, for providing their support in this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Punarbasu Chaudhuri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Bakshi, M., Kumar, A. et al. Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly–Matla estuarine system, India. Environ Geochem Health 41, 53–70 (2019). https://doi.org/10.1007/s10653-018-0119-7

Download citation

Keywords

  • Potential toxic elements
  • Sediments quality
  • Pollution indices
  • Environmental risk
  • Riverine systems