Toxicity assessment of copper by electrochemically active bacteria in wastewater

  • Lijuan Zhang
  • Sam Fong Yau Li
  • Huchun Tao
Original Paper


A bioelectrochemical sensor (BES) was constructed for toxicity assessment of copper in contaminated domestic sewage. Electrochemically active bacteria (EAB), whose growth was supported by the bioenergy generated from an in situ metallurgical process, functioned as the sensing elements. The external resistance of metallurgical BES was optimized based on linear sweep voltammetry analysis. The stabilized BES was utilized to monitor the copper toxicity in real wastewater. During the less than 1-h sensing period, copper concentration ranging from 1 to 5 mg L−1 could be detected. A power output of around 100 Wh (kg Cu)−1 and metallic copper resource were obtained simultaneously. This study demonstrated that the highly active EAB species enriched in metallurgical BES could be a promising candidate for rapid and reliable evaluation of copper toxicity in real domestic wastewater.


Bioelectrochemical sensor Electrochemically active bacteria Copper toxicity Linear sweep voltammetry Domestic wastewater 



This work was supported by the National University of Singapore, National Research Foundation and Economic Development Board (SPORE, COY-15-EWI-RCFSA/N197-1) and Ministry of Education (R-143-000-519-112).

Supplementary material

10653_2018_105_MOESM1_ESM.docx (7.9 mb)
Supplementary material 1 (DOCX 8093 kb)


  1. Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233.CrossRefGoogle Scholar
  2. Bourgeois, W., Burgess, J. E., & Stuetz, R. M. (2001). On-line monitoring of wastewater quality: A review. Journal of Chemical Technology and Biotechnology, 76(4), 337–348.CrossRefGoogle Scholar
  3. Cheng, S. A., Wang, B. S., & Wang, Y. H. (2013). Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresource Technology, 147, 332–337.CrossRefGoogle Scholar
  4. ElMekawy, A., Hegab, H. M., Pant, D., & Saint, C. P. (2017). Bio-analytical applications of microbial fuel cell based-biosensors for onsite water quality monitoring. Journal of Applied Microbiology, 124(1), 302–313.CrossRefGoogle Scholar
  5. Feng, C. J., Hu, A. Y., Chen, S. H., & Yu, C. P. (2013). A decentralized wastewater treatment system using microbial fuel cell techniques and its response to a copper shock load. Bioresource Technology, 143, 76–82.CrossRefGoogle Scholar
  6. Gajaraj, S., & Hu, Z. Q. (2014). Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production. Chemosphere, 117, 151–157.CrossRefGoogle Scholar
  7. Ha, P. T., Moon, H., Kim, B. H., Ng, H. Y., & Chang, I. S. (2010). Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosensors & Bioelectronics, 25(7), 1629–1634.CrossRefGoogle Scholar
  8. He, Z. (2013). Microbial fuel cells: Now let us talk about energy. Environmental Science and Technology, 47(1), 332–333.CrossRefGoogle Scholar
  9. Jia, H., Yang, G., Ngo, H. H., Guo, W. S., Zhang, H. W., Gao, F., et al. (2017). Enhancing simultaneous response and amplification of biosensor in microbial fuel cell-based upflow anaerobic sludge bed reactor supplemented with zero-valent iron. Chemical Engineering Journal, 327, 1117–1127.CrossRefGoogle Scholar
  10. Jiang, Y., Liang, P., Liu, P. P., Yan, X. X., Bian, Y. H., & Huang, X. (2017). A cathode-shared microbial fuel cell sensor array for water alert system. International Journal of Hydrogen Energy, 42(7), 4342–4348.CrossRefGoogle Scholar
  11. Jiang, Y., Liang, P., Zhang, C. Y., Bian, Y. H., Yang, X. F., Huang, X., et al. (2015). Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials. Bioresource Technology, 190, 367–372.CrossRefGoogle Scholar
  12. Kim, M., Hyun, M. S., Gadd, G. M., Kim, G. T., Lee, S. J., & Kim, H. J. (2009). Membrane-electrode assembly enhances performance of a microbial fuel cell type biological oxygen demand sensor. Environmental Technology, 30(4), 329–336.CrossRefGoogle Scholar
  13. Kumlanghan, A., Liu, J., Thavarungkul, P., Kanatharana, P., & Mattiasson, B. (2007). Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosensors & Bioelectronics, 22(12), 2939–2944.CrossRefGoogle Scholar
  14. Li, T., Wang, X., Zhou, L., An, J. K., Li, J. H., Li, N., et al. (2016). Bioelectrochemical sensor using living biofilm to in situ evaluate flocculant toxicity. ACS Sensors, 1(11), 1374–1379.CrossRefGoogle Scholar
  15. Liu, R., Gao, C. Y., Zhao, Y. G., Wang, A. J., Lu, S. S., Wang, M., et al. (2012). Biological treatment of steroidal drug industrial effluent generation in the microbial fuel cells. Bioresource Technology, 123, 86–91.CrossRefGoogle Scholar
  16. Logan, B. E. (2007). Microbial fuel cells. Hoboken, New Jersey: Wiley.CrossRefGoogle Scholar
  17. Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381.CrossRefGoogle Scholar
  18. Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488(7411), 313–319.CrossRefGoogle Scholar
  19. Madoni, P., & Romeo, M. G. (2006). Acute toxicity of heavy metals towards freshwater ciliated protists. Environmental Pollution, 141(1), 1–7.CrossRefGoogle Scholar
  20. McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic wastewater treatment as a net energy producer—Can this be achieved? Environmental Science and Technology, 45(17), 7100–7106.CrossRefGoogle Scholar
  21. MEP. (2002). Discharge standard of pollutants for municipal wastewater treatment plant (GB 18918-2002)—Ministry of Environmental Protection (MEP) of China.Google Scholar
  22. Modin, O., Wang, X., Wu, X., Rauch, S., & Fedje, K. K. (2012). Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 235–236, 291–297.CrossRefGoogle Scholar
  23. Modin, O., & Wilén, B. M. (2012). A novel bioelectrochemical BOD sensor operating with voltage input. Water Research, 46(18), 6113–6120.CrossRefGoogle Scholar
  24. NEA. (2015). Qualifying criteria for highly efficient water pollution. Singapore: National Environment Agency (NEA).Google Scholar
  25. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548.CrossRefGoogle Scholar
  26. Seidl, M., Huang, V., & Mouchel, J. M. (1998). Toxicity of combined sewer overflows on river phytoplankton: The role of heavy metals. Environmental Pollution, 101(1), 107–116.CrossRefGoogle Scholar
  27. Shen, Y. J., Wang, M., Chang, I. S., & Ng, H. Y. (2013). Effect of shear rate on the response of microbial fuel cell toxicity sensor to Cu(II). Bioresource Technology, 136, 707–710.CrossRefGoogle Scholar
  28. Stein, N. E., Hamelers, H. M. V., van Straten, G., & Keesman, K. J. (2012). On-line detection of toxic components using a microbial fuel cell-based biosensor. Journal of Process Control, 22(9), 1755–1761.CrossRefGoogle Scholar
  29. Stein, N. E., Keesman, K. J., Hamelers, H. V. M., & van Straten, G. (2011). Kinetic models for detection of toxicity in a microbial fuel cell based biosensor. Biosensors & Bioelectronics, 26(7), 3115–3120.CrossRefGoogle Scholar
  30. Tao, H. C., Zhang, L. J., Gao, Z. Y., & Wu, W. M. (2011). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334–10339.CrossRefGoogle Scholar
  31. Thomas, Y. R. J., Picot, M., Carer, A., Berder, O., Sentieys, O., & Barriere, F. (2013). A single sediment-microbial fuel cell powering a wireless telecommunication system. Journal of Power Sources, 241, 703–708.CrossRefGoogle Scholar
  32. Tront, J. M., Fortner, J. D., Plotze, M., Hughes, J. B., & Puzrin, A. M. (2008). Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosensors & Bioelectronics, 24(4), 586–590.CrossRefGoogle Scholar
  33. Wang, J., Zhang, Y., Wang, Y., Xu, R., Sun, Z., & Jie, Z. (2010). An innovative reactor-type biosensor for BOD rapid measurement. Biosensors & Bioelectronics, 25(7), 1705–1709.CrossRefGoogle Scholar
  34. Zhang, L. J., Gao, Y., Lai, L. K., & Li, S. F. Y. (2015). Whole-cell-based identification of electrochemically active bacteria in microbial fuel cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 29(23), 2211–2218.CrossRefGoogle Scholar
  35. Zhang, L. J., Tao, H. C., Wei, X. Y., Lei, T., Li, J. B., Wang, A. J., et al. (2012). Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere, 89(10), 1177–1182.CrossRefGoogle Scholar
  36. Zhou, T. Y., Han, H. W., Liu, P., Xiong, J., Tian, F. K., & Li, X. K. (2017). Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors, 17(10), 2230. Scholar
  37. Zhang, Y. F., & Angelidaki, I. (2011). Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability. Biotechnology and Bioengineering, 108(10), 2339–2347.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory for Heavy Metal Treatment and Reutilization, School of Environment and EnergyPeking University Shenzhen Graduate SchoolShenzhenChina
  2. 2.Department of Chemistry, Faculty of ScienceNational University of SingaporeSingaporeSingapore
  3. 3.NUS Environmental Research Institute, National University of SingaporeSingaporeSingapore

Personalised recommendations