Skip to main content

Potentially toxic elements in soil of the Khyber Pakhtunkhwa province and Tribal areas, Pakistan: evaluation for human and ecological risk assessment

Abstract

Potentially toxic elements (PTEs) contaminations in the soil ecosystem are considered as extremely hazardous due to toxicity, persistence and bioaccumulative nature. Therefore, this study was aimed to summarize the results of published PTEs in soil of Khyber Pakhtunkhwa and Tribal areas, Pakistan. Results were evaluated for the pollution quantification factors, including contamination factor (CF), pollution load index (PLI), ecological risk index (ERI) and human health risk assessment. The highest CF (797) and PLI (7.35) values were observed for Fe and ERI (857) values for Cd. Soil PTEs concentrations were used to calculate the human exposure for the risk assessment, including chronic or non-carcinogenic risks such as the hazard quotient (HQ) and carcinogenic or cancer risk (CR). The values of HQ were > 1 for the Cd, Co and Cr in Khyber Pakhtunkhwa and Tribal areas. Tribal areas showed higher values of ERI, HQ, and CR as compared to the Khyber Pakhtunkhwa that were attributed to the mining activities, weathering and erosion of mafic and ultramafic bedrocks hosting ophiolites. This study strongly recommends that best control measures need to be taken for soil PTEs with the intent to alleviate any continuing potential threat to the human health, property and environment, which otherwise could enter ecosystem and ultimately the living beings. Further studies are recommended to combat the soil PTEs concentrations and toxicity in the Tribal areas for a best picture of understanding the element effects on human, and environment can be achieved that will lead to a sustainable ecological harmony.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ali, Z., Kazi, A. G., Malik, R. N., Naz, M., Khan, T., Hayat, A., et al. (2015). Heavy metal built-up in agricultural soils of Pakistan: Sources, Ecological Consequences, and Possible Remediation Measures. In I. Sherameti & A. Varma (Eds.), Heavy metal contamination of soils: Monitoring and remediation (pp. 23–42). Cham: Springer.

    Google Scholar 

  2. Amin, N.-U., Hussain, A., Alamzeb, S., & Begum, S. (2013). Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry, 136(3–4), 1515–1523. https://doi.org/10.1016/j.foodchem.2012.09.058.

    CAS  Article  Google Scholar 

  3. Arif, M. (2000). Zincian, manganiferous chrome spinel from the Swat valley ophiolite, NW Pakistan. Geological Bulletin University of Peshawar, 33, 103–110.

    Google Scholar 

  4. Arif, M. (2003). Sulphides and sulpharsenides in the emerald-hosting rocks from the Indus suture zone in Swat, NW Pakistan. Swiss Bulletin of Mineralogy and Petrology, 83(3), 261–271.

    CAS  Google Scholar 

  5. Arif, M., Henry, D. J., & Moon, C. J. (2010). Cr-bearing tourmaline associated with emerald deposits from Swat, NW Pakistan: Genesis and its exploration significance. American Mineralogist, 95(5–6), 799–809.

    CAS  Article  Google Scholar 

  6. Arif, M., & Jan, M. Q. (1993). Chemistry of chromite and associated phases from the Shangla ultramafic body in the Indus suture zone of Pakistan. Geological Society, London, Special Publications, 74(1), 101–112.

    Article  Google Scholar 

  7. Askarova, M. A., & Mussagaliyeva, A. N. (2014). The ecological situation in contaminated areas of oil and gas exploration in Atyrau Region. Procedia-Social and Behavioral Sciences, 120, 455–459.

    Article  Google Scholar 

  8. ATSDR. (2011). Agency for toxic substances and disease registry, draft toxicological profiles. Atlanta: ATSDR.

    Google Scholar 

  9. Cárdenas-González, M., Osorio-Yáñez, C., Gaspar-Ramírez, O., Pavković, M., Ochoa-Martínez, A., López-Ventura, D., et al. (2016). Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environmental Research, 150, 653.

    Article  Google Scholar 

  10. Castillo, M. A., Trujillo, I. S., Alonso, E. V., de Torres, A. G., & Pavón, J. C. (2013). Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, Region of Andalucía, Southern Spain). Marine Pollution Bulletin, 76(1), 427–434.

    Article  Google Scholar 

  11. Chamberlain, C., Zeitler, P., & Jan, M. (1989). The dynamics of the suture between the Kohistan island arc and the Indian plate in the Himalaya of Pakistan. Journal of Metamorphic Geology, 7(1), 135–149.

    CAS  Article  Google Scholar 

  12. Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  Google Scholar 

  13. Coward, M. P., Windley, B. F., Broughton, R. D., Luff, I. W., Petterson, M. G., Pudesy, C. J., et al. (1986). Collision tectonics in the NW Himalaya. In M. P. Coward & A. Ries (Eds.), Collision tectonics (Vol. 19, pp. 203–219). London: Geological Society of London Special Publication.

    Google Scholar 

  14. Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical reviews in oncology/hematology, 42(1), 35–56.

    CAS  Article  Google Scholar 

  15. DiPietro, J. A., & Isachsen, C. E. (2001). U-Pb zircon ages from the Indian plate in northwest Pakistan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics, 20(4), 510–525.

    Article  Google Scholar 

  16. Ebqa’ai, M., & Ibrahim, B. (2017). Application of multivariate statistical analysis in the pollution and health risk of traffic-related heavy metals. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-9930-9.

    Article  Google Scholar 

  17. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501–4512.

    CAS  Article  Google Scholar 

  18. Fowler, B. A. (2009). Monitoring of human populations for early markers of cadmium toxicity: A review. Toxicology and Applied Pharmacology, 238(3), 294–300.

    CAS  Article  Google Scholar 

  19. Gu, Y.-G., Gao, Y.-P., & Lin, Q. (2016). Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Applied Geochemistry, 67, 52–58. https://doi.org/10.1016/j.apgeochem.2016.02.004.

    CAS  Article  Google Scholar 

  20. Gul, S., Naz, A., Khan, A., Nisa, S., & Irshad, M. (2015a). Phytoavailability and Leachability of Heavy Metals from Contaminated Soil Treated with Composted Livestock Manure. Soil and Sediment Contamination: An International Journal (just-accepted), 00-00

  21. Gul, S., Naz, A., Khan, A., Nisa, S., & Irshad, M. (2016). Phytoavailability and Leachability of Heavy Metals from Contaminated Soil Treated with Composted Livestock Manure. Soil and Sediment Contamination: An International Journal, 25(2), 181–194.

    CAS  Article  Google Scholar 

  22. Gul, N., Shah, M. T., Khan, S., & Muhammad, S. (2015b). Quantification of the Heavy Metals in the Agricultural Soils of Mardan District, Khyber Pakhtunkhwa, Pakistan. Journal of global innovation in agricultural and social sciences, 2(4), 158–162.

    Article  Google Scholar 

  23. Hamad, S. H., Schauer, J. J., Shafer, M. M., Al-Rheem, E. A., Skaar, P. S., Heo, J., et al. (2014). Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Science of the Total Environment, 494, 39–48.

    Article  Google Scholar 

  24. Harikumar, P., Nasir, U., & Rahman, M. M. (2009). Distribution of heavy metals in the core sediments of a tropical wetland system. International Journal of Environmental Science and Technology, 6(2), 225–232.

    CAS  Article  Google Scholar 

  25. HC (2004). Federal contaminated site risk assessment in Canada-Part II: Health Canada toxicological reference values (TRVs) and chemical-specific factors. Ottawa, Canada: HC

  26. Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing. China Atmospheric Environment, 57, 146–152.

    CAS  Article  Google Scholar 

  27. Hussain, R., Khattak, S., Shah, M., & Ali, L. (2015). Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. Journal of Soils and Sediments, 15(5), 1119–1129.

    CAS  Article  Google Scholar 

  28. Jan, F. A., Ishaq, M., Khan, S., Ihsanullah, I., Ahmad, I., & Shakirullah, M. (2010). A comparative study of human health risks via consumption of food crops grown on wastewater irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). Journal of Hazardous Materials, 179(1), 612–621.

    CAS  Article  Google Scholar 

  29. Jiao, X., Teng, Y., Zhan, Y., Wu, J., & Lin, X. (2015). Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District. Northeast China. PloS one, 10(5), e0127736.

    Article  Google Scholar 

  30. Kabata-Pendias, A. (2010). Trace elements in soils and plants. Boca Raton: CRC press.

    Book  Google Scholar 

  31. Kelepertzis, E. (2014). Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicology and Environmental Safety, 100, 258–265.

    CAS  Article  Google Scholar 

  32. Khan, M., Achakzai, A., Iqbal, Y., Ullah, W., Khan, N., Sharif, M., et al. (2015). Heavy metals status of the urban and agricultural soils of Peshawar. Pakistan. Pure and Applied Biology, 4(3), 418.

    CAS  Article  Google Scholar 

  33. Khan, K., Lu, Y., Khan, H., Ishtiaq, M., Khan, S., Waqas, M., et al. (2013a). Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food and Chemical Toxicology, 58, 449–458.

    CAS  Article  Google Scholar 

  34. Khan, M. U., Malik, R. N., & Muhammad, S. (2013b). Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere, 93(10), 2230–2238. https://doi.org/10.1016/j.chemosphere.2013.07.067.

    CAS  Article  Google Scholar 

  35. Khan, M. U., Muhammad, S., Malik, R. N., Khan, S. A., & Tariq, M. (2016). Heavy metals potential health risk assessment through consumption of wastewater irrigated wild plants: A case study. Human and Ecological Risk Assessment: An International Journal, 22(1), 141–152.

    CAS  Article  Google Scholar 

  36. Khan, S., Shah, I. A., Muhammad, S., Malik, R. N., & Shah, M. T. (2014). Arsenic and Heavy Metal Concentrations in Drinking Water in Pakistan and Risk Assessment: A Case Study. Human and Ecological Risk Assessment: An International Journa l(ahead-of-print), 1–12

  37. Khan, M. A., Wajid, A., Noor, S., Khattak, F. K., Akhter, S., & Rahman, I. U. (2008). Effect of soil contamination on some heavy metals content of Cannabis sativa. Journal of the Chemical Society of Pakistan, 30(6), 805–809.

    CAS  Google Scholar 

  38. Knight, C., Kaiser, J., Lalor, G., Robotham, H., & Witter, J. (1997). Heavy metals in surface water and stream sediments in Jamaica. Environmental Geochemistry and Health, 19(2), 63–66.

    CAS  Article  Google Scholar 

  39. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. In P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology (Vol. 236, pp. 117–192). Cham: Springer International Publishing.

    Google Scholar 

  40. Landrigan, P. J., Schechter, C. B., Lipton, J. M., Fahs, M. C., & Schwartz, J. (2002). Environmental pollutants and disease in American children: Estimates of morbidity, mortality, and costs for lead poisoning, asthma, cancer, and developmental disabilities. Environmental Health Perspectives, 110(7), 721.

    Article  Google Scholar 

  41. Lison, D. (1996). Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease). Critical Reviews in Toxicology, 26(6), 585–616.

    CAS  Article  Google Scholar 

  42. Liu, Y., Ma, J., Yan, H., Ren, Y., Wang, B., Lin, C., et al. (2016). Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei province, China. Ecotoxicology and Environmental Safety, 126, 14–22. https://doi.org/10.1016/j.ecoenv.2015.11.037.

    CAS  Article  Google Scholar 

  43. Lu, X., Zhang, X., Li, L. Y., & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, 27–34.

    CAS  Article  Google Scholar 

  44. Man, Y. B., Sun, X. L., Zhao, Y. G., Lopez, B. N., Chung, S. S., Wu, S. C., et al. (2010). Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city. Environment International, 36(6), 570–576. https://doi.org/10.1016/j.envint.2010.04.014.

    CAS  Article  Google Scholar 

  45. Mohammad, J., Khan, S., Shah, M. T., Din, I. U., & Ahmad, A. (2015). Essential and non-essential metals concentrations in the morel mushroom (Morchella esculenta) in Dir-Kohistan, Northern Pakistan. Pak J Botany, 47, 133.

    CAS  Google Scholar 

  46. Muhammad, S., Shah, M. T., & Khan, S. (2011a). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98(2), 334–343. https://doi.org/10.1016/j.microc.2011.03.003.

    CAS  Article  Google Scholar 

  47. Muhammad, S., Shah, M. T., & Khan, S. (2011b). Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchemical Journal, 99(1), 67–75.

    CAS  Article  Google Scholar 

  48. Muhammad, S., Shah, M. T., Khan, S., Saddique, U., Gul, N., Khan, M. U., et al. (2013). Wild plant assessment for heavy metal phytoremediation potential along the mafic and ultramafic terrain in northern Pakistan. BioMed research international, 2013, 194765.

    Google Scholar 

  49. Nawab, J., Khan, S., Shah, M. T., Gul, N., Ali, A., Khan, K., et al. (2016). Heavy Metal Bioaccumulation in Native Plants in Chromite Impacted Sites: A Search for Effective Remediating Plant Species. CLEAN–Soil, Air, Water, 44(1), 37–46.

    CAS  Article  Google Scholar 

  50. Nazir, R., Khan, M., Masab, M., Rehman, H., Rauf, N., Shahab, S., et al. (2015). Accumulation of Heavy Metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physicochemical parameters of soil and water Collected from Tanda Dam kohat. Journal of pharmacy and pharmaceutical sciences, 7(3), 89–97.

    CAS  Google Scholar 

  51. Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions, 188(2), 276–288.

    CAS  Article  Google Scholar 

  52. Nordberg, G., Jin, T., Bernard, A., Fierens, S., Buchet, J. P., Ye, T., et al. (2002). Low bone density and renal dysfunction following environmental cadmium exposure in China. AMBIO: A Journal of the Human Environment, 31(6), 478–481.

    Article  Google Scholar 

  53. Ogunkunle, C. O., & Fatoba, P. O. (2013). Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria. Polish Journal of Environmental Studies, 22(2), 487–493.

    CAS  Google Scholar 

  54. Olawoyin, R., Oyewole, S. A., & Grayson, R. L. (2012). Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta. Ecotoxicology and Environmental Safety, 85, 120–130.

    CAS  Article  Google Scholar 

  55. Ordóñez, A., Álvarez, R., Charlesworth, S., De Miguel, E., & Loredo, J. (2011). Risk assessment of soils contaminated by mercury mining, Northern Spain. Journal of Environmental Monitoring, 13(1), 128–136.

    Article  Google Scholar 

  56. Pelfrêne, A., Waterlot, C., & Douay, F. (2013). Influence of land use on human bioaccessibility of metals in smelter-impacted soils. Environmental Pollution, 178, 80–88.

    Article  Google Scholar 

  57. Prasad, A. S. (2013). Essential and toxic element: Trace elements in human health and disease. Amsterdam: Elsevier.

    Google Scholar 

  58. Qu, C., Sun, K., Wang, S., Huang, L., & Bi, J. (2012). Monte carlo simulation-based health risk assessment of heavy metal soil pollution: A case study in the Qixia mining area, China. Human and Ecological Risk Assessment: An International Journal, 18(4), 733–750.

    CAS  Article  Google Scholar 

  59. Rehman, Z. U., Khan, S., Qin, K., Brusseau, M. L., Shah, M. T., & Din, I. (2016). Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Science of the Total Environment, 550, 321–329.

    CAS  Article  Google Scholar 

  60. Robson, M. (2003). Methodologies for assessing exposures to metals: Human host factors. Ecotoxicology and Environmental Safety, 56(1), 104–109. https://doi.org/10.1016/S0147-6513(03)00054-X.

    CAS  Article  Google Scholar 

  61. Shah, M. T., Ara, J., Muhammad, S., Khan, S., Asad, S. A., & Ali, L. (2014). Potential heavy metals accumulation of indigenous plant species along the mafic and ultramafic terrain in the Mohmand Agency, Pakistan. CLEAN–Soil, Air, Water, 42(3), 339–346.

    CAS  Article  Google Scholar 

  62. Shah, M. T., Begum, S., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramfic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences, 60(5), 1091–1102.

    CAS  Article  Google Scholar 

  63. Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M., et al. (2013). Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, 2013, 1–5.

    Article  Google Scholar 

  64. Sial, R., Chaudhary, M., Abbas, S., Latif, M., & Khan, A. (2006). Quality of effluents from Hattar industrial estate. Journal of Zhejiang University SCIENCE B, 7(12), 974–980.

    CAS  Article  Google Scholar 

  65. Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of hazardous materials, 174(1), 455–462.

    CAS  Article  Google Scholar 

  66. Tahirkheli, R. K., Mattauer, M., Proust, F., & Tapponnier, P. (1979). The India Eurasia suture zone in northern Pakistan: Ssynthesis and interpretation of recent data at plate scale, Geodynamics of Pakistan (pp. 125–130). Quetta: Geological Survey of Pakistan.

    Google Scholar 

  67. Treloar, P., Broughton, R., Williams, M., Coward, M., & Windley, B. (1989). Deformation, metamorphism and imbrication of the Indian Plate, south of the Main Mantle Thrust, North Pakistan. Journal of Metamorphic Geology, 7(1), 111–125.

    CAS  Article  Google Scholar 

  68. Ullah, H., & Khan, I. (2015). Effects of sewage water irrigation of cabbage to soil geochemical properties and products safety in peri-urban Peshawar, Pakistan. Environmental monitoring and assessment, 187(3), 1–12.

    CAS  Article  Google Scholar 

  69. USDOE (2011). The risk assessment information system (RAIS). U.S. Oak: Department of Energy’s Oak Ridge Operations Office (ORO).

  70. USEPA (1986). Guidelines for the health risk assessment of chemical mixtures. EPA 630/R-98/002. Washington, DC: US Environmental Protection Agency.

  71. USEPA (1989). Risk assessment guidance for superfund. volume I: Human health evaluation manual (Part A). EPA/540/1-89/002.

  72. USEPA (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, Washington

  73. Usero, J., Garcia, A., & Fraidias, J. (2000). Calidad de las aguas y sedimentos del Litoral Andaluz. Consejería de Medio Ambiente de la Junta de Andalucía.

  74. Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., et al. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    CAS  Article  Google Scholar 

  75. Zhang, X., Yang, L., Li, Y., Li, H., Wang, W., & Ye, B. (2012). Impacts of lead/zinc mining and smelting on the environment and human health in China. Environmental Monitoring and Assessment, 184(4), 2261–2273.

    CAS  Article  Google Scholar 

  76. Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408(4), 726–733.

    CAS  Article  Google Scholar 

  77. Zheng-Qi, X., Shi-Jun, N., Xian-Guo, T., & Cheng-jiang, Z. (2008). Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science and Technology, 2, 029.

    Google Scholar 

  78. Zhong, T., Xue, D., Zhao, L., & Zhang, X. (2017). Concentration of heavy metals in vegetables and potential health risk assessment in China. [journal article]. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-9909-6.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of corresponding authors in published literature who provide us relevant data for this study. We are thankful to Mr. Muhammad Owais Zaib, Research Associate, CIIT for preparing the geological map of the study area.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Said Muhammad.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saddique, U., Muhammad, S., Tariq, M. et al. Potentially toxic elements in soil of the Khyber Pakhtunkhwa province and Tribal areas, Pakistan: evaluation for human and ecological risk assessment. Environ Geochem Health 40, 2177–2190 (2018). https://doi.org/10.1007/s10653-018-0091-2

Download citation

Keywords

  • Human health risk assessment
  • Ecological risk assessment
  • Mining, mafic and ultramafic rocks
  • Ophiolites