Skip to main content

Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment

Abstract

Red mud (RM) was used to remediate heavy metal-contaminated soils. Experiments with two different dosages of RM added to soils were carried out in this study. It was found that soil pH increased 0.3 and 0.5 unit with the dosage of 3 and 5% (wt%), respectively. At the dosage of 5%, the highest stabilization efficiencies for Cd, Pb, Cu and Zn reached 67.95, 64.21, 43.73 and 63.73%, respectively. The addition of RM obviously transferred Cd from the exchangeable fraction to the residual fraction. Meanwhile, in comparison with the control (no RM added), it reduced 24.38, 49.20, 19.42 and 8.89% of Cd, Pb, Cu and Zn in wheat grains at the RM addition dosage of 5%, respectively. At the same time, the yield of wheat grains increased 17.81 and 24.66% at the RM addition dosage of 3 and 5%, respectively. Finally, the addition of RM did not change the soil bacterial community. These results indicate that RM has a great potential in stabilizing heavy metals in calcareous agricultural soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams, M. L., Zhao, F. J., McGrath, S. P., Nicholson, F. A., & Chambers, B. J. (2004). Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environmental Quality, 33(2), 532–541.

    CAS  Article  Google Scholar 

  2. Baize, D., Bellanger, L., & Tomassone, R. (2009). Relationships between concentrations of trace metals in wheat grains and soil. Agronomy for Sustainable Development, 29(2), 297–312.

    CAS  Article  Google Scholar 

  3. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Fierer, N., Owens, S. M., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6(8), 1621–1624.

    CAS  Article  Google Scholar 

  4. Chandra, R., Bharagava, R. N., Yadav, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162(2–3), 1514–1521.

    CAS  Article  Google Scholar 

  5. Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3), 377–394.

    Article  Google Scholar 

  6. Douay, F., Roussel, H., Pruvot, C., & Waterlot, C. (2008). Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Environmental Science and Pollution Research, 15(2), 162–169.

    CAS  Article  Google Scholar 

  7. Hooda, P. S., & Alloway, B. J. (1998). Cadmium and lead sorption behaviour of selected English and Indian soils. Geoderma, 84(s1–3), 121–134.

    CAS  Article  Google Scholar 

  8. Hua, Y., Heal, K. V., & Friesl-Hanl, W. (2016). The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. Journal of Hazardous Materials, 325(5), 17–30.

    Google Scholar 

  9. James, B. R. (2001). Remediation-by-reduction strategies for chromate- contaminated soils. Environmental Geochemistry and Health, 23(3), 175–179.

    CAS  Article  Google Scholar 

  10. Jiang, Y., Chen, J., Wu, Y., Wang, Q., & Li, H. (2016). Sublethal toxicity endpoints of heavy metals to the nematode Caenorhabditis elegans. PLoS ONE, 11(1), e0148014.

    Article  CAS  Google Scholar 

  11. Khan, F. I., Husain, T., & Hejazi, R. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71(2), 95–122.

    Article  Google Scholar 

  12. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145(1), 365–373.

    CAS  Article  Google Scholar 

  13. Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management, 28(1), 215–225.

    CAS  Article  Google Scholar 

  14. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environmental Pollution, 144(1), 62–69.

    CAS  Article  Google Scholar 

  15. Lee, S. H. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161(1), 1–7.

    Article  CAS  Google Scholar 

  16. Lee, S. H., Lee, J., Choi, Y. J., & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069–1075.

    CAS  Article  Google Scholar 

  17. Li, J., & Xu, Y. (2015). Immobilization of Cd in a paddy soil using moisture management and amendment. Chemosphere, 22(7), 5580–5586.

    CAS  Google Scholar 

  18. Li, X. L., Ziadi, N., Bélanger, G., Cai, Z. C., & Xu, H. (2011). Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Canadian Journal of Soil Science, 91(4), 521–531.

    CAS  Article  Google Scholar 

  19. Liu, W. X., Liu, J. W., Wu, M. Z., Li, Y., Zhao, Y., & Li, S. R. (2009). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environmental Contamination and Toxicology, 82(3), 343–347.

    CAS  Article  Google Scholar 

  20. Lopes, G., Guilherme, L. R., Costa, E. T., Curi, N., & Penha, H. G. (2013). Increasing arsenic sorption on red mud by phosphogypsum addition. Journal of Hazardous Materials, 262(8), 1196–1203.

    CAS  Article  Google Scholar 

  21. Luo, H. L., Huang, S. S., Luo, L., Wu, G. Y., & Liu, Y. (2012). Modified granulation of red mud by weak gelling and its application to stabilization of Pb. Journal of Hazardous Materials, 227–228, 265–273.

    Article  CAS  Google Scholar 

  22. Luo, L., Ma, C. Y., Ma, Y. B., Zhang, S. Z., Lv, J. T., & Cui, M. Q. (2011). New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution, 159(5), 1108–1113.

    CAS  Article  Google Scholar 

  23. Ma, Y. M., Li, F. F., Yang, W. H., Lv, L., Xue, H. T., & Wang, Y. Y. (2016). Remediation of Cr(VI)-contaminated soil using the acidified hydrazine hydrate. Bulletin of Environmental Contamination and Toxicology, 97(3), 392–394.

    CAS  Article  Google Scholar 

  24. Moon, D. H., Cheong, K. H., Koutsospyros, A., Chang, Y. Y., Hyun, S., Ok, Y. S., et al. (2016). Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil. Environmental Science and Pollution Research, 23(3), 2362–2370.

    CAS  Article  Google Scholar 

  25. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology, 60(1–4), 193–207.

    Article  Google Scholar 

  26. Ok, Y. S., Lim, J. E., & Moon, D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33(1), 83–91.

    CAS  Article  Google Scholar 

  27. Paulose, B., Datta, S. P., Rattan, R. K., & Chhonkar, P. K. (2007). Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environmental Pollution, 146(1), 19–24.

    CAS  Article  Google Scholar 

  28. Ran, J., Wang, D., Wang, C., Zhang, G., & Zhang, H. (2015). Heavy metal contents, distribution, and prediction in a regional soil-wheat system. Science of the Total Environment, 544, 422–431.

    Article  CAS  Google Scholar 

  29. Shin, W., & Kim, Y. K. (2015). Stabilization of heavy metal contaminated marine sediments with red mud and apatite composite. Journal of Soils and Sediments, 16(2), 726–735.

    Article  CAS  Google Scholar 

  30. Sun, Y., Li, Y., Xu, Y., Liang, X., & Wang, L. (2015). In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105–106, 200–206.

    Article  CAS  Google Scholar 

  31. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    CAS  Article  Google Scholar 

  32. Wang, C. W., Ji, J. F., Yang, Z. F., Chen, L. X., Browne, P., & Yu, R. L. (2012). Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China—a typical industry-agriculture transition area. Biological Trace Element Research, 148(2), 264–274.

    CAS  Article  Google Scholar 

  33. Wang, Z. W., Nan, Z. R., Wang, S. L., & Zhao, Z. J. (2011). Accumulation and distribution of cadmium and lead in wheat (Triticum aestivum L.) grown in contaminated soils from the oasis, north-west China. Journal of the Science of Food and Agriculture, 91(2), 377–384.

    CAS  Article  Google Scholar 

  34. Wang, Y. Y., Peng, B., Yang, Z. H., Chai, L. Y., Liao, Q., Zhang, Z., et al. (2015). Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil. Applied Soil Ecology, 85, 50–55.

    Article  Google Scholar 

  35. Witzany, G. (2011). Soil biology: Biocommunication in soil microorganisms. Berlin: Springer.

    Book  Google Scholar 

  36. Xenidis, A., Stouraiti, C., & Papassiopi, N. (2010). Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. Journal of Hazardous Materials, 177(1–3), 929–937.

    CAS  Article  Google Scholar 

  37. Yang, Z., Liang, L., Yang, W., Shi, W., Tong, Y., Chai, L., Gao, S., & Liao, Q. (2018). Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-1492-6.

    CAS  Article  Google Scholar 

  38. Yin, P., & Shi, L. (2014). Remediation of Cd, Pb, and Cu-contaminated agricultural soil using three modified industrial by-products. Water, Air, and Soil Pollution, 225(11), 1–14.

    Article  CAS  Google Scholar 

  39. Yin, B., Zhou, L., Yin, B., & Chen, L. (2015). Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. Journal of Soils and Sediments, 16(2), 537–546.

    Article  CAS  Google Scholar 

  40. Yong, S. O., & Kim, J. G. (2007). Enhancement of cadmium phytoextraction from contaminated soils with Artemisia princeps var. orientalis. Journal of Applied Sciences, 7(2), 263–268.

    Article  Google Scholar 

  41. Yuan, Y. N., Chai, L. Y., Yang, Z. H., Liao, Y. P., Deng, X. H., & Zhang, S. J. (2013). Application of polymeric aluminum salts in remediation of soil contaminated by Pb, Cd, Cu, and Zn. Journal of Central South University, 20(6), 1638–1644.

    CAS  Article  Google Scholar 

  42. Zeng, F. R., Ali, S., Zhang, H. T., Ouyang, Y. N., Qiu, B. Y., Wu, F. B., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    CAS  Article  Google Scholar 

  43. Zhang, S. J., Yang, Z. H., Wu, B. L., Wang, Y. Y., Wu, R. P., & Liao, Y. P. (2014). Removal of Cd and Pb in calcareous soils by using Na2EDTA recycling washing. CLEAN—Soil, Air, Water, 42(5), 641–647.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant from the National Natural Science Foundation of China (41430637 and 51704093); Program for Innovative Research Team (in Science and Technology) in University of Henan Province (16IRTSTHN012); and Opening Foundation of the Chinese National Engineering Research Center for Control and Treatment of Heavy metal Pollution, Changsha, 410083, China (No. 2015CNERC-CTHMP-).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruiyang Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, F., Song, J. et al. Stabilization of Cd-, Pb-, Cu- and Zn-contaminated calcareous agricultural soil using red mud: a field experiment. Environ Geochem Health 40, 2143–2153 (2018). https://doi.org/10.1007/s10653-018-0089-9

Download citation

Keywords

  • Heavy metal contamination
  • Stabilization
  • Calcareous agricultural soil
  • Red mud
  • Wheat