Skip to main content

Advertisement

Log in

Review of total suspended particles (TSP) and PM2.5 concentration variations in Asia during the years of 1998–2015

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In Asian countries such as China, Malaysia, Pakistan, India, Taiwan, Korea, Japan and Hong Kong, ambient air total suspended particulates and PM2.5 concentration data were collected and discussed during the years of 1998–2015 in this study. The aim of the present study was to (1) investigate and collect ambient air total suspended particulates (TSP) and PM2.5 concentrations for Asian countries during the past two decades. (2) Discuss, analyze and compare those particulates (TSP and PM2.5) annual concentration distribution trends among those Asian countries during the past two decades. (3) Test the mean concentration differences in TSP and PM2.5 among the Asian countries during the past decades. The results indicated that the mean TSP concentration order was shown as China > Malaysia > Pakistan > India > Taiwan > Korea > Japan. In addition, the mean PM2.5 concentration order was shown as Vietnam > India > China > Hong Kong > Mongolia > Korea > Taiwan > Japan and the average percentages of PM2.5 concentrations for Taiwan, China, Japan, Korea, Hong Kong, Mongolia and Other (India and Vietnam) were 8, 21, 6, 8, 14, 13 and 30%, respectively, during the past two decades. Moreover, t test results revealed that there were significant mean TSP and PM2.5 concentration differences for either China or India to any of the countries such as Taiwan, Korea and Japan in Asia during the past two decades for this study. Noteworthy, China and India are both occupied more than 60% of the TSP and PM2.5 particulates concentrations out of all the Asia countries. As for Taiwan, the average PM2.5 concentration displayed increasing trend in the years of 1998–1999. However, it showed decreasing trend in the years of 2000–2010. As for Korea, the average PM2.5 concentrations showed decreasing trend during the years of 2001–2013. Finally, the average PM2.5 concentrations for Mongolia displayed increasing trend in the years of 2004–2013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abas, M Rb, Oros, D. R., & Simoneit, B. R. T. (2004). Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.

    Article  CAS  Google Scholar 

  • Abbey, D. E., Nishino, N., McDonnell, W. F., Burchette, R. J., Knutsen, S. F., Lawrence Beeson, W., et al. (1999). Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. American Journal of Respiratory and Critical Care Medicine, 159, 373–382.

    Article  CAS  Google Scholar 

  • Ahmed, E., Kim, K. H., Shon, Z. H., & Song, S. K. (2015). Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmospheric Environment, 101, 125–133.

    Article  CAS  Google Scholar 

  • Arakaki, T., Azechi, S., Somada, Y., Ijyu, M., Nakaema, F., Hitomi, Y., Handa, D., Oshiro, Y., Miyagi, Y., Tsuhako, A., & Murayama, H. (2014). Spatial and temporal variations of chemicals in the TSP aerosols simultaneously collected at three islands in Okinawa, Japan. Atmospheric Environment, 97, 479–485.

    Article  CAS  Google Scholar 

  • Cao, J., Lee, S., Ho, K., Zou, S., Zhang, X., & Pan, J. (2003). Spatial and seasonal distributions of atmospheric carbonaceous aerosols in pearl river delta region, China. Particuology, 1(1), 33–37.

    Article  CAS  Google Scholar 

  • Chen, Y., Ebenstein, A., Greenstone, M., & Li, H. (2013). Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences, 110, 12936–12941.

    Article  Google Scholar 

  • Chen, L., Peng, S., Liu, J., & Hou, Q. (2012). Dry deposition velocity of total suspended particles and meteorological influence in four locations in Guangzhou, China. Journal of Environmental Sciences, 24(4), 632–639.

    Article  Google Scholar 

  • Chen, Y., Schleicher, Nina, Chen, Yizhen, Chai, Fahe, & Norra, Stefan. (2014). The influence of governmental mitigation measures on contamination characteristics of PM2.5 in Beijing. Science of the Total Environment, 490, 647–658.

    Article  CAS  Google Scholar 

  • Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Yu., et al. (2015). PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96–104.

    Article  CAS  Google Scholar 

  • Choi, J. K., Heo, J. B., Ban, S. J., Yi, S. M., & Zoh, K. D. (2012). Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmospheric Environment, 60, 583–592.

    Article  CAS  Google Scholar 

  • Choi, J. K., Heo, J. B., Ban, S. J., Yi, S. M., & Zoh, K. D. (2013). Source apportionment of PM2.5 at the coastal area in Korea. Science of the Total Environment, 447, 370–380.

    Article  CAS  Google Scholar 

  • Davy, P. K., Gunchin, G., Markwitz, A., Trompetter, W. J., Barry, B. J., Shagjjamba, D., et al. (2011). Air particulate matter pollution in Ulaanbaatar, Mongolia: determination of composition, source contributions and source locations. Atmospheric Pollution Research, 2, 126–137.

    Article  CAS  Google Scholar 

  • Fang, G. C., & Chang, S. C. (2010). Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research, 98, 368–377.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, S.-C., Chen, Y.-C., & Zhuang, Y.-J. (2014). Measuring metallic elements of total suspended particulates (TSPs), dry deposition flux, and dry deposition velocity for seasonal variation in central Taiwan. Atmospheric Research, 143, 107–117.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, C.-N., Chu, C.-C., Wu, Y.-S., Fu, P. P.-C., Yang, I.-L., et al. (2003). Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. The Science of the Total Environment, 308, 157–166.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, C.-N., Wang, N.-P., Wu, Y.-S., Wang, V., Fu, P. P. C., et al. (2000). The study of TSP, PM2.5-10 and PM2.5 during Taiwan Chi-Chi Earthquake in the traffic site of central Taiwan, Taichung. Chemosphere, 41, 1727–1731.

    Article  CAS  Google Scholar 

  • Fang, G. C., Chang, C.-N., Wu, Y.-S., Fu, P. P.-C., Yang, D.-G., & Chu, C.-C. (1999). Characterization of chemical species in PM2.5 and PM10 aerosols in suburban and rural sites of central Taiwan. The Science of the Total Environment, 234, 203–212.

    Article  CAS  Google Scholar 

  • Fann, N., & Risley, D. (2013). The public health context for PM2.5 and ozone air quality trends. Air Quality, Atmosphere and Health, 6(1), 1–11.

    Article  CAS  Google Scholar 

  • Feng, Y., Chen, Y., Guo, H., Zhi, G., Xiong, S., Li, J., et al. (2009). Characteristics of organic and elemental carbon in PM2.5 samples in Shanghai, China. Atmospheric Research, 92, 434–442.

    Article  CAS  Google Scholar 

  • Fontes, T., Li, P., Barros, N., & Zhao, P. (2017). Trends of PM2.5 concentrations in China: A long term approach. Journal of Environmental Management, 196, 719–732.

    Article  CAS  Google Scholar 

  • Geng, F., Hua, J., Mu, Z., Peng, L., Xu, X., Chen, R., et al. (2013a). Differentiating the associations of black carbon and fine particle with daily mortality in a Chinese city. Environmental Research, 120, 27–32.

    Article  CAS  Google Scholar 

  • Geng, N., Wang, J., Xu, Y., Zhang, W., Chen, C., & Zhang, R. (2013b). PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment. Particuology, 11, 99–109.

    Article  CAS  Google Scholar 

  • Giang, N. T. H., & Oanh, N. T. K. (2014). Roadside levels and traffic emission rates of PM2.5 and BTEX in Ho Chi Minh City, Vietnam. Atmospheric Environment, 94, 806–816.

    Article  CAS  Google Scholar 

  • Gogikar, P., & Tyagi, B. (2016). Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmospheric Environment, 147, 11–21.

    Article  CAS  Google Scholar 

  • Gummeneni, S., Yusup, Y. B., Chavali, M., & Samadi, S. Z. (2011). Source apportionment of particulate matter in the ambient air of Hyderabad city, India. Atmospheric Research, 101, 752–764.

    Article  CAS  Google Scholar 

  • Han, Y. M., Han, Z. W., Cao, J. J., Chow, J. C., Watson, J. G., An, Z. S., et al. (2008). Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmospheric Environment, 42(10), 2405–2414.

    Article  CAS  Google Scholar 

  • Han, Y. J., Kim, H.-W., Cho, S.-H., Kim, P.-R., & Kim, W.-J. (2015). Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmospheric Research, 153, 416–428.

    Article  CAS  Google Scholar 

  • He, L. Y., Hu, M., Huang, X.-F., Zhang, Y.-H., & Tang, X.-Y. (2006). Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. Science of the Total Environment, 359, 167–176.

    Article  CAS  Google Scholar 

  • He, K. H., Yang, F. M., & Duan, F. K. (2011). Atmospheric particulate matter and regional complex air pollution. Beijing: Science Press.

    Google Scholar 

  • Ho, K. F., Ho, S. S. H., Huang, R.-J., Chuang, H.-C., Cao, J.-J., Han, Y., et al. (2016). Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. Atmospheric Environment, 126, 162–170.

    Article  CAS  Google Scholar 

  • Ho, K. F., Lee, S. C., Chan, C. K., Yuc, J. C., Chow, J. C., & Yao, X. H. (2003). Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment, 37, 31–39.

    Article  CAS  Google Scholar 

  • Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., & van den Brandt, P. A. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. The Lancet, 360, 1203–1209.

    Article  Google Scholar 

  • Hsu, C. Y., Chiang, H. C., Lin, S. L., Chen, M. J., Lin, T. Y., & Chen, Y. C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of the Total Environment, 15(541), 1139–1150.

    Article  CAS  Google Scholar 

  • Ikemori, F., Honjyo, K., Yamagami, M., & Nakamura, T. (2015). Influence of contemporary carbon originating from the 2003 Siberian forest fire on organic carbon in PM2.5 in Nagoya, Japan. Science of the Total Environment, 530–531, 403–410.

    Article  CAS  Google Scholar 

  • Jo, H. Y., & Kim, C. H. (2013). Identification of long-range transported haze phenomena and their meteorological features over Northeast Asia. Journal of Applied Meteorology and Climatology, 52, 1318–1328.

    Article  Google Scholar 

  • Jugder, D., Shinoda, M., Kimura, R., Batbold, A., & Amarjargal, D. (2014). Quantitative analysis on windblown dust concentrations of PM10 (PM2.5) during dust events in Mongolia. Aeolian Research, 14, 3–13.

    Article  Google Scholar 

  • Kavuri, N. C., Paul, K. K., & Roy, N. (2015). TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela. Particuology, 20, 124–133.

    Article  Google Scholar 

  • Kawashima, H., & Haneishi, Y. (2012). Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan. Atmospheric Environment, 46, 568–579.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    Article  CAS  Google Scholar 

  • Khan, M. F., Shirasuna, Y., Hirano, K., & Masunaga, S. (2010). Characterization of PM2.5, PM2.5–10 and PM>10 in ambient air, Yokohama, Japan. Atmospheric Research, 96(1), 159–172.

    Article  CAS  Google Scholar 

  • Kim, K. H., Choi, G.-H., Kang, C.-H., Lee, J.-H., Kim, J. Y., Youn, Y. H., et al. (2003). The chemical composition of fine and coarse particles in relation with the Asian Dust events. Atmospheric Environment, 37, 753–765.

    Article  CAS  Google Scholar 

  • Kim, K. H., Pandey, S. K., Nguyen, H. T., Chung, S. Y., Cho, S. J., Kim, M. Y., et al. (2010). Long-term behavior of particulate matters at urban roadside and background locations in Seoul, Korea. Transportation Research Part D, 15, 168–174.

    Article  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment, 407, 6196–6204.

    Article  CAS  Google Scholar 

  • Kume, K., Ohura, T., Noda, T., Amagai, T., & Fusaya, M. (2007). Seasonal and spatial trends of suspended-particle associated polycyclic aromatic hydrocarbons in urban Shizuoka, Japan. Journal of Hazardous Materials, 144, 513–521.

    Article  CAS  Google Scholar 

  • Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., et al. (2016). Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmospheric Research, 167, 208–215.

    Article  CAS  Google Scholar 

  • Lee, S., Bae, G., Moon, K., & Kim, P. Y. (2002). Characteristics of TSP and PM2.5 measured at Tokchok Island in the Yellow Sea. Atmospheric Environment, 36(35), 5427–5435.

    Article  CAS  Google Scholar 

  • Lee, H., Park, S. S., Kim, K. W., & Kim, Y. J. (2008). Source identification of PM2.5 particles measured in Gwangju, Korea. Atmospheric Research, 88, 199–211.

    Article  CAS  Google Scholar 

  • Li, D., Liu, J., Zhang, J., Gui, H., Du, P., Yu, T., Wang, J., Lu, Y., Liu, W., & Cheng, Y. (2016). Identification of long-range transport pathways and potential sources of PM2.5 and PM10 in Beijing from 2014 to 2015. Journal of Environmental Sciences. In Press, Corrected Proof—Note to users.

  • Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., & Tong, C. (2017). Clustered long-range transport routes and potential sources of PM2.5 and their chemical characteristics around the Taiwan Strait. Atmospheric Environment, 148, 152–166.

    Article  CAS  Google Scholar 

  • Lin, Y., Huang, K., Zhuang, G., Fu, J. S., Wang, Q., Liu, T., et al. (2014a). A multi-year evolution of aerosol chemistry impacting visibility and haze formation over an Eastern Asia megacity, Shanghai. Atmospheric Environment, 92, 76–86.

    Article  CAS  Google Scholar 

  • Lin, J. T., Pan, D., Davis, S. J., Zhang, Q., He, K. B., Wang, C., Streets, D. G., Wuebbles, D. J., & Guan, D. B. (2014b). China’s International Trade and Air Pollution in the United States. www.pnas.org/cgi/doi/10.1073/pnas.1312860111.

  • Liu, G., Li, J., Wu, D., & Xu, H. (2015). Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology, 18, 135–143.

    Article  CAS  Google Scholar 

  • Ma, Y., Chen, R., Pan, G., Xu, X., Song, W., Chen, B., et al. (2011). Fine particulate air pollution and daily mortality in Shenyang, China. Science of the Total Environment, 409, 2473–2477.

    Article  CAS  Google Scholar 

  • Meng, C. C., Wang, L. T., Zhang, F. F., Wei, Z., Ma, S. M., Ma, X., et al. (2016). Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmospheric Research, 171, 133–146.

    Article  CAS  Google Scholar 

  • Molina, M. J., & Molina, L. T. (2004). Megacities and atmospheric pollution. Journal of the Air and Waste Management Association, 54, 644–680.

    Article  CAS  Google Scholar 

  • Niu, M., Gan, K., Sun, S., & Li, F. (2017). Application of decomposition-ensemble learning paradigm with phase space reconstruction for day-ahead PM2.5 concentration forecasting. Journal of Environmental Management, 196, 110–118.

    Article  CAS  Google Scholar 

  • Peng, J., Chen, S., Lü, H., Liu, Y., & Wu, J. (2016). Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sensing of Environment, 174, 109–121.

    Article  Google Scholar 

  • Pui, D. Y. H., Chen, S.-C., & Zuo, Z. (2014). PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology, 13, 1–26.

    Article  CAS  Google Scholar 

  • Shah, M. H., & Shaheen, N. (2008). Annual and seasonal variations of trace metals in atmospheric suspended particulate matter in Islamabad, Pakistan. Water, Air, and Soil Pollution, 190, 13–25.

    Article  CAS  Google Scholar 

  • Shah, M. H., Shaheen, N., & Nazir, R. (2012). Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmospheric Pollution Research, 3, 39–45.

    Article  CAS  Google Scholar 

  • Tiwaria, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., & Attri, S. D. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62.

    Article  CAS  Google Scholar 

  • Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., & Chiang, H.-L. (2007). Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of Hazardous Materials, 147, 111–119.

    Article  CAS  Google Scholar 

  • Wang, F., Guo, Z., Lin, T., & Rose, N. L. (2016). Seasonal variation of carbonaceous pollutants in PM2.5 at an urban ‘supersite’ in Shanghai, China. Chemosphere, 146, 238–244.

    Article  CAS  Google Scholar 

  • Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmospheric Environment, 68, 221–229.

    Article  CAS  Google Scholar 

  • Wang, Y. C., & Lin, Y. K. (2015). Mortality associated with particulate concentration and Asian dust storms in Metropolitan Taipei. Atmospheric Environment, 117, 32–40.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G., Zhanga, X., Huang, K., Xu, C., Tang, A., et al. (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40, 2935–2952.

    Article  CAS  Google Scholar 

  • Xiao, H. Y., & Liu, C. Q. (2004). Chemical characteristics of water-soluble components in TSP over Guiyang, SW China, 2003. Atmospheric Environment, 38(37), 6297–6306.

    Article  CAS  Google Scholar 

  • Xiao, H. W., Xie, L.-H., Long, A.-M., Ye, F., Pan, Y.-P., Li, D.-N., et al. (2015). Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea. Atmospheric Environment, 109, 70–78.

    Article  CAS  Google Scholar 

  • Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., et al. (2012). Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104–105, 264–272.

    Article  CAS  Google Scholar 

  • Yang, H. C., Chang, S. H., Lu, R., & Liou, D. M. (2016). The effect of particulate matter size on cardiovascular health in Taipei Basin, Taiwan. Computer Methods and Programs in Biomedicine, 137, 261–268.

    Article  Google Scholar 

  • Yorifujia, T., Kashima, S., & Doi, H. (2016). Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002–2013). Science of the Total Environment, 551–552, 66–72.

    Article  CAS  Google Scholar 

  • Zhang, Q., Shen, Z., Cao, J., Zhang, R., Zhang, L., Huang, R.-J., et al. (2015). Variations in PM2.5, TSP, BC, and trace gases (NO2, SO2, and O3) between haze and non-haze episodes in winter over Xi’an, China. Atmospheric Environment, 112, 64–71.

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, W., Cheng, M., Liu, S., Jun, X., He, Y., et al. (2017). The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmospheric Environment, 159, 147–161.

    Article  CAS  Google Scholar 

  • Zhao, M., Qiao, T., Huang, Z., Zh, M., Xu, W., Xiu, G., et al. (2015). Comparison of ionic and carbonaceous compositions of PM2.5 in 2009 and 2012 in Shanghai, China. Science of the Total Environment, 536, 695–703.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Zhao, C. (2012). Concentration and distribution analysis of heavy metals in total suspended particulates along Shanghai–Nanjing expressway. Procedia Environmental Sciences, 13, 1405–1411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Council of the ROC (Taiwan) for financially supporting this work under project no. 103-2221-E-241-004-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, GC., Zhuang, YJ., Cho, MH. et al. Review of total suspended particles (TSP) and PM2.5 concentration variations in Asia during the years of 1998–2015. Environ Geochem Health 40, 1127–1144 (2018). https://doi.org/10.1007/s10653-017-9992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9992-8

Keywords

Navigation