Skip to main content

Distribution and vertical migration of polycyclic aromatic hydrocarbons in forest soil pits of southeastern Tibet

Abstract

PAHs could be transported to Tibetan Plateau in accompany with atmospheric circulation. The forest regions were found be an important sink for PAHs, while their distributions and migrations in forest are still uncertain. In this study, soil profile samples were collected in southeastern Tibet and the concentrations, distributions, and migration of PAHs in forest region were investigated. The PAHs levels in the forest soils were at the low end of remote sites, ranged from 27.4 to 120.3 ng g−1 on a dry weight based. Due to low ambient temperature and high organic carbon content, enrichment of PAHs was found in higher altitude on north side. According to the soil profiles, the vertical distributions of PAHs in organic layers were mainly influenced by pedogenesis, while the vertical distributions in mineral layers were dominated by downward leaching effect. Enrich factor (EF) of PAHs was estimated, and the values in organic layers were positively correlated with the octanol–air partition coefficients (K OA), but EFs in mineral layers decreased with the K OA values. PAHs in the surface soils on the north side of forest were relatively stable, while the migration of PAHs on the south sides and other clearing sites was more active. The leaching rates of PAHs in clearing site ranged between 1.42 and 29.3%. The results from this study are valuable on the characterization of PAHs in Tibetan Plateau.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aitkenhead, J. A., & McDowell, W. H. (2000). Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles, 14, 127–138.

    CAS  Article  Google Scholar 

  2. Albanese, S., Fontaine, B., Chen, W., Lima, A., Cannatelli, C., Piccolo, A., et al. (2015). Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: The Campania Plain (Southern Italy) case study. Environmental Geochemistry and Health, 37, 1–20.

    CAS  Article  Google Scholar 

  3. Atkinson, R., & Arey, J. (1994). Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. Environmental Health Perspectives, 102, 117–126.

    CAS  Google Scholar 

  4. Burkhard, L. P. (2000). Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environmental Science and Technology, 34, 4663–4668.

    CAS  Article  Google Scholar 

  5. Chen, D., Liu, W., Liu, X., Westgate, J. N., & Wania, F. (2008). Cold-trapping of persistent organic pollutants in the mountain soils of Western Sichuan, China. Environmental Science and Technology, 42, 9086–9091.

    CAS  Article  Google Scholar 

  6. Choi, S. D., Shunthirasingham, C., Daly, G. L., Xiao, H., Lei, Y. D., & Wania, F. (2009). Levels of polycyclic aromatic hydrocarbons in Canadian mountain air and soil are controlled by proximity to roads. Environmental Pollution, 157(12), 3199–3206.

    CAS  Article  Google Scholar 

  7. Cong, Z., Kang, S., Gao, S., Zhang, Y., Li, Q., & Kawamura, K. (2013). Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record. Environmental Science & Technology, 47, 2579–2586.

    CAS  Article  Google Scholar 

  8. Cong, Z., Kawamura, K., Kang, S., & Fu, P. (2015). Penetration of biomass-burning emissions from South Asia through the Himalayas: New insights from atmospheric organic acids. Scientific Reports, 5, 9580.

  9. Fang, Y., Chen, Y., Tian, C., Lin, T., Hu, L., Li, J., et al. (2016). Application of PMF receptor model merging with PAHs signatures for source apportionment of black carbon in the continental shelf surface sediments of the Bohai and Yellow Seas, China. Journal of Geophysical Research: Oceans, 121, 1346–1359.

    Google Scholar 

  10. Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42, 8139–8149.

    CAS  Article  Google Scholar 

  11. Gong, P., Wang, X., Sheng, J., & Yao, T. (2010). Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: Role of the monsoon system. Atmospheric Environment, 44, 2518–2523.

    CAS  Article  Google Scholar 

  12. Halsall, C., Barrie, L., Fellin, P., Muir, D., Billeck, B., Lockhart, L., Rovinsky, F. Y., Kononov, E. Y., & Pastukhov, B. (1997). Spatial and temporal variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere. Environmental Science & Technology, 31, 3593–3599.

    CAS  Article  Google Scholar 

  13. Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology, 30, 825–832.

    CAS  Article  Google Scholar 

  14. Horstmann, M., Bopp, U., & McLachlan, M. S. (1997). Comparison of the bulk deposition of PCDD/F in a spruce forest and an adjacent clearing. Chemosphere, 34, 1245–1254.

    CAS  Article  Google Scholar 

  15. Horstmann, M., & McLachlan, M. S. (1998). Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmospheric Environment, 32, 1799–1809.

    CAS  Article  Google Scholar 

  16. Jernström, B., & Gräslund, A. (1994). Covalent binding of benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxides to DNA: Molecular structures, induced mutations and biological consequences. Biophysical Chemistry, 49, 185–199.

    Article  Google Scholar 

  17. Kirchner, M., Faus-Kessler, T., Jakobi, G., Levy, W., Henkelmann, B., Bernhoft, S., et al. (2009). Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters. Environmental Pollution, 157, 3238–3247.

    CAS  Article  Google Scholar 

  18. Krauss, M., Wilcke, W., Martius, C., Bandeira, A. G., Garcia, M. V. B., & Amelung, W. (2005). Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environmental Pollution, 135(1), 143–154.

    CAS  Article  Google Scholar 

  19. Krauss, M., Wilcke, W., & Zech, W. (2000). Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: Depth distribution as indicator of different fate. Environmental Pollution, 110, 79–88.

    CAS  Article  Google Scholar 

  20. Li, A., Jang, J. K., & Scheff, P. A. (2003). Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environmental Science & Technology, 37, 2958–2965.

    CAS  Article  Google Scholar 

  21. Li, J., Zhang, G., Li, X. D., Qi, S. H., Liu, G. Q., & Peng, X. Z. (2006). Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China. Science of the Total Environment, 355, 145–155.

    CAS  Article  Google Scholar 

  22. Liang, E., Wang, Y., Xu, Y., Liu, B., & Shao, X. (2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363–373.

    Article  Google Scholar 

  23. Liu, X., Li, J., Zheng, Q., Bing, H., Zhang, R., Wang, Y., et al. (2014). Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: A case study of Mt. Gongga, Eastern Tibetan Plateau. Environmental Science and Technology, 48, 14377–14385.

    CAS  Article  Google Scholar 

  24. Liu, B., Liang, E., & Zhu, L. (2011). Microclimatic conditions for Juniperus saltuaria Treeline in the Sygera Mountains, Southeastern Tibetan Plateau. Mountain Research and Development, 31, 45–53.

    Article  Google Scholar 

  25. Liu, X., & Luo, T. (2011). Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet. Arctic, Antarctic, and Alpine Research, 43, 229–238.

    Article  Google Scholar 

  26. Lu, Y. L., Liu, S. R., Sun, P. S., Liu, X. L., & Zhang, R. P. (2007). Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China. Ying Yong Sheng Tai Xue Bao, 18, 2398–2405.

    Google Scholar 

  27. McLachlan, M. (1999). Framework for the interpretation of measurements of SOCs in plants. Environmental Science & Technology, 33, 1799–1804.

    CAS  Article  Google Scholar 

  28. McLachlan, M. S., & Horstmann, M. (1998). Forests as filters of airborne organic pollutants: A model. Environmental Science and Technology, 32, 413–420.

    CAS  Article  Google Scholar 

  29. McLachlan, M., Czub, G., & Wania, F. (2002). The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils. Environmental Science & Technology, 36, 4860–4867.

    CAS  Article  Google Scholar 

  30. Moeckel, C., Nizzetto, L., Di Guardo, A., Steinnes, E., Freppaz, M., Filippa, G., et al. (2008). Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling. Environmental Science and Technology, 42, 8374–8380.

    CAS  Article  Google Scholar 

  31. Moeckel, C., Nizzetto, L., Strandberg, B., Lindroth, A., & Jones, K. C. (2009). Air-boreal forest transfer and processing of polychlorinated biphenyls. Environmental Science and Technology, 43, 5282–5289.

    CAS  Article  Google Scholar 

  32. Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70(9), 1596–1602.

    CAS  Article  Google Scholar 

  33. Niu, J., Chen, J., Martens, D., Henkelmann, B., Quan, X., Yang, F., et al. (2004). The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles. Science of the Total Environment, 322, 231–241.

    CAS  Article  Google Scholar 

  34. Nizzetto, L., Jarvis, A., Brivio, P. A., Jones, K. C., & Di Guardo, A. (2008). Seasonality of the air–forest canopy exchange of persistent organic pollutants. Environmental Science and Technology, 42, 8778–8783.

    CAS  Article  Google Scholar 

  35. Nizzetto, L., & Perlinger, J. A. (2012). Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere. Environmental Science and Technology, 46, 2699–2707.

    CAS  Article  Google Scholar 

  36. Obrist, D., Zielinska, B., & Perlinger, J. A. (2015). Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U.S. remote forests. Chemosphere, 134, 98–105.

    CAS  Article  Google Scholar 

  37. Park, D., Barabad, M., Lee, G., Kwon, S., Cho, Y., Lee, D., et al. (2013). Emission characteristics of particulate matter and volatile organic compounds in cow dung combustion. Environmental Science and Technology, 47, 12952–12957.

    CAS  Article  Google Scholar 

  38. Qiu, J. (2008). China: The third pole. Nature News, 454, 393–396.

    CAS  Article  Google Scholar 

  39. Ren, J., Wang, X., Xue, Y., Gong, P., Joswiak, D. R., Xu, B., et al. (2014). Persistent organic pollutants in mountain air of the southeastern Tibetan Plateau: Seasonal variations and implications for regional cycling. Environmental Pollution, 194, 210–216.

    CAS  Article  Google Scholar 

  40. Ruiz-Fernández, A. C., Ontiveros-Cuadras, J. F., Sericano, J. L., Sanchez-Cabeza, J.-A., Liong Wee Kwong, L., Dunbar, R. B., et al. (2014). Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments. Science of the Total Environment, 493, 505–520.

    Article  Google Scholar 

  41. Seth, R., Mackay, D., & Muncke, J. (1999). Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals. Environmental Science and Technology, 33, 2390–2394.

    CAS  Article  Google Scholar 

  42. Sheng, J., Wang, X., Gong, P., Joswiak, D. R., Tian, L., Yao, T., et al. (2013). Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study. Environmental Science and Technology, 47, 3199–3208.

    CAS  Article  Google Scholar 

  43. Simonich, S. L., & Hites, R. A. (1994). Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature, 370(6484), 49–51.

    CAS  Article  Google Scholar 

  44. Tao, S., Wang, W. T., Liu, W. X., Zuo, Q. A., Wang, X. L., Wang, R., et al. (2011). Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. Journal of Environmental Monitoring, 13, 175–181.

    CAS  Article  Google Scholar 

  45. Tian, C., Liu, L., Ma, J., Tang, J., & Li, Y. (2011). Modeling redistribution of á-HCH in Chinese soil induced by environment factors. Environmental Pollution, 159, 2961–2967.

    CAS  Article  Google Scholar 

  46. Tian, X., Shu, L., Wang, M., & Zhao, F. (2007). Study on the spatial and temporal distribution of forest fire in Tibet. Fire Safety Science, 01, 10–14.

    Google Scholar 

  47. Tsai, J., Chen, S., Huang, K., Lin, W., Lee, W., Lin, C., Hsieh, L., Chiu, J., & Kuo, W. (2014). Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. Science of The Total Environment, 466–467, 195–202.

    CAS  Article  Google Scholar 

  48. Vilanova, R. M., Fernández, P., Martýìnez, C., & Grimalt, J. O. (2001). Polycyclic aromatic hydrocarbons in remote mountain lake waters. Water Research, 35, 3916–3926.

    CAS  Article  Google Scholar 

  49. Wang, X., Gong, P., Sheng, J., Joswiak, D. R., & Yao, T. (2015). Long-range atmospheric transport of particulate polycyclic aromatic hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau. Atmospheric Environment, 115, 124–131.

    CAS  Article  Google Scholar 

  50. Wang, X., Gong, P., Yao, T., & Jones, K. C. (2010a). Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau. Environmental Science and Technology, 44, 2988–2993.

    CAS  Article  Google Scholar 

  51. Wang, X., Gong, P., Zhang, Q., & Yao, T. (2010b). Impact of climate fluctuations on deposition of DDT and hexachlorocyclohexane in mountain glaciers: Evidence from ice core records. Environmental Pollution, 158, 375–380.

    CAS  Article  Google Scholar 

  52. Wang, Z., Ma, X., Na, G., Lin, Z., Ding, Q., & Yao, Z. (2009). Correlations between physicochemical properties of PAHs and their distribution in soil, moss and reindeer dung at Ny-Ålesund of the Arctic. Environmental Pollution, 157(11), 3132–3136.

    CAS  Article  Google Scholar 

  53. Wang, X., Sheng, J., Gong, P., Xue, Y., Yao, T., & Jones, K. C. (2012). Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling. Environmental Pollution, 170, 145–151.

    CAS  Article  Google Scholar 

  54. Wang, C., Wang, X., Gong, P., & Yao, T. (2014a). Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange. Environmental Pollution, 184, 138–144.

    CAS  Article  Google Scholar 

  55. Wang, X., Xue, Y., Gong, P., & Yao, T. (2014b). Organochlorine pesticides and polychlorinated biphenyls in Tibetan forest soil: Profile distribution and processes. Environmental Science and Pollution Research, 21, 1897–1904.

    CAS  Article  Google Scholar 

  56. Wang, X., Yao, T., Cong, Z., Yan, X., Kang, S., & Zhang, Y. (2007). Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma, China. Chinese Science Bulletin, 52(10), 1405–1413.

    CAS  Article  Google Scholar 

  57. Wania, F., & McLachlan, S. (2001). Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environmental Science & Technology, 35, 582–590.

    CAS  Article  Google Scholar 

  58. Wania, F., & Westgate, J. N. (2008). On the mechanism of mountain cold-trapping of organic chemicals. Environmental Science and Technology, 42, 9092–9098.

    CAS  Article  Google Scholar 

  59. Weiss, P., Lorbeer, G., & Scharf, S. (2000). Regional aspects and statistical characterisation of the load with semivolatile organic compounds at remote Austrian forest sites. Chemosphere, 40(9–11), 1159–1171.

    CAS  Article  Google Scholar 

  60. Xu, B., Cao, J., Hansen, J., Yao, T., Joswia, D. R., Wang, N., et al. (2009). Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 106, 22114–22118.

    CAS  Article  Google Scholar 

  61. Zhang, Y., & Tao, S. (2009). Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment, 43, 812–819.

    CAS  Article  Google Scholar 

  62. Zhang, Y., Tao, S., Shen, H., & Ma, J. (2009). Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proceedings of the National Academy of Sciences, 106, 21063–21067.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41071321 and 41671480) and Youth Innovation Promotion Association (CAS2011067). We would like to thank all supporting staffs at the Southeastern Tibet Observation and Research Station for providing an alpine environment and assisting the sample collections on fields.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wang, X., Gong, P. et al. Distribution and vertical migration of polycyclic aromatic hydrocarbons in forest soil pits of southeastern Tibet. Environ Geochem Health 40, 1941–1953 (2018). https://doi.org/10.1007/s10653-017-9969-7

Download citation

Keywords

  • PAHs
  • Forest soil
  • Southeastern Tibet
  • Vertical migration