Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits

Abstract

Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of l-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL−1) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148–8162.

    CAS  Article  Google Scholar 

  2. Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2), 173–181.

    CAS  Article  Google Scholar 

  3. Ahemad, M., & Khan, M. S. (2012). Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi Journal of Biological Sciences, 19, 451–459.

    CAS  Article  Google Scholar 

  4. Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., & Llande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant and Soil, 204, 57–67.

    CAS  Article  Google Scholar 

  5. Araújo, A. S. F., Santos, V. B., & Monteiro, R. T. R. (2008). Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil. European Journal of Soil Biology, 44(2), 225–230.

    Article  Google Scholar 

  6. Bakker, P. A. H. M., Raaijmakers, J. M., Bloemberg, G. V., Hofte, M., Lemanceau, P., & Cooke, M. (2007). New perspectives and approaches in plant growth-promoting rhizobacteria research. European Journal of Plant Pathology, 119, 241–242.

    Article  Google Scholar 

  7. Belimov, A. A., Safronova, V. I., Sergeyeva, T. A., Egorova, T. N., Matveyeva, V. A., Tsyganov, V. E., et al. (2001). Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47, 642–652.

    CAS  Article  Google Scholar 

  8. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37(2), 241–250.

    CAS  Article  Google Scholar 

  9. Beveridge, T. J. (1989). Role of cellular design in bacterial metal accumulation and mineralization. Annual Review of Microbiology, 43, 147–171.

    CAS  Article  Google Scholar 

  10. Bhattacharya, C., Harsha, P., Gupta, S., & Roy, S. (2014). Isolation and characterization of bacterial isolates from agricultural soil at Durg district. Indian Journal of Scientific Research, 4(1), 221–226.

    Google Scholar 

  11. Bird, R., & Hopkins, R. H. (1954). The action of some α- amylases on amylose. Biochemical Journal, 56, 86–99.

    CAS  Article  Google Scholar 

  12. Bloemberg, G. V., & Lugtenberg, B. J. J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology, 4, 43–350.

    Article  Google Scholar 

  13. Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46, 237–245.

    CAS  Article  Google Scholar 

  14. Choudhary, S., & Sar, P. (2011). Identification and characterization of uranium accumulation potential of a uranium mine isolated Pseudomonas strain. World Journal of Microbiology & Biotechnology, 27, 1795–1801.

    CAS  Article  Google Scholar 

  15. Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek Journal of Microbiology. doi:10.1007/s10482-013-0095-y.

    Google Scholar 

  16. Emamverdian, A., Ding, Y., Mokhberdoran, F., & Xie, Y. (2015). Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal. doi:10.1155/2015/756120.

    Google Scholar 

  17. Etesami, H., Alikhani, H. A., & Akbari, A. A. (2009). Evaluation of plant growth hormones production (IAA) ability by iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Applied Sciences Journal, 6(11), 1576–1584.

    CAS  Google Scholar 

  18. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.

    CAS  Article  Google Scholar 

  19. Gillan, D. C., Roosa, S., Billon, G., & Wattiez, R. (2014). The long-term adaptation of bacterial communities in metal-contaminated sediments: A metaproteogenomic study. Environmental Microbiology, 17(6), 1991–2005.

    Article  Google Scholar 

  20. Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.

    CAS  Article  Google Scholar 

  21. Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793–796.

    CAS  Google Scholar 

  22. Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2014). Simultaneous detection and quantification of indole-3-acetic acid (IAA) 2 and indole-3-butyric acid (IBA) produced by rhizobacteria from L-3 tryptophan (Trp) using HPTLC. Journal of Microbiological Methods, 110, 7–14.

    Article  Google Scholar 

  23. Gravel, V., Antoun, H., & Tweddell, R. J. (2007). Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39(8), 1968–1977.

    CAS  Article  Google Scholar 

  24. Harden, A. (1906). On Voges and Proskauer’s reaction for certain bacteria. Proceedings of the Royal Society B, 77, 424–425.

    CAS  Article  Google Scholar 

  25. Hansda, A., & Kumar, V. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134.

    Google Scholar 

  26. Hemraj, V., Diksha, S., & Avneet, G. (2013). A review on commonly used biochemical test for bacteria. Innovare Journal of Life Science, 1(1), 1–7.

    Google Scholar 

  27. Huang, S., Sheng, P., & Zhang, H. (2012). Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (coleoptera: scarabaeidae). International Journal of Molecular Sciences, 13, 2563–2577.

    CAS  Article  Google Scholar 

  28. Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W., & Sessitsch, A. (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70(5), 2667–2677.

    CAS  Article  Google Scholar 

  29. Islam, S., Akanda, A. M., Prova, A., Islam, T. M., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology. doi:10.3389/fmicb.2015.01360.

    Google Scholar 

  30. Jarosławiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in micro-organisms. Microbiology, 160, 12–25.

    Article  Google Scholar 

  31. Jing, Y., He, Z., & Yang, X. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science B, 8(3), 192–207.

    CAS  Article  Google Scholar 

  32. Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 8, 355–364.

    Article  Google Scholar 

  33. Khan, A., Khan, S., Khan, M. A., Qamar, Z., & Waqas, M. (2015). The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environmental Science and Pollution Research. doi:10.1007/s11356-015-4881-0.

    Google Scholar 

  34. Knapp, J. S., & Clark, V. L. (1984). Anaerobic growth of Neisseria gonorrhoeae coupled to nitrite reduction. Infection and Immunity, 46(1), 176–181.

    CAS  Google Scholar 

  35. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: Wiley.

    Google Scholar 

  36. Li, Q., Wu, S., Liu, G., Liao, X., Deng, X., Sun, D., et al. (2004). Simultaneous biosorption of cadmium(II) and lead(II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 34, 135–142.

    Article  Google Scholar 

  37. Ma, Y., Rajkumar, M., Luoa, Y. M., & Freitas, H. (2011). Inoculation of endophytic bacteria on host and non-host plants—Effects on plant growth and Ni uptake. Journal of Hazardous Materials, 195, 230–237.

    CAS  Article  Google Scholar 

  38. Meas, J., Mateos-Naranjo, E., Caviedes, M. A., Redondo-Gómez, S., Pajuelo, E., & Rodríguez-Llorente, I. D. (2014). Scouting contaminated estuaries: Heavy metal resistant and plant growth promoting rhizobacteria in the native metal rhizoaccumulator Spartina maritime. Marine Pollution Bulletin, 90, 150–159.

    Article  Google Scholar 

  39. Munoz, R., Alvarez, M. T., Munoz, A., Terrazas, E., Guieysse, B., & Mattiasson, B. (2006). Sequential removal of heavy metal ions and organic pollutants using an algal–bacterial consortium. Chemosphere, 63, 903–911.

    CAS  Article  Google Scholar 

  40. Munzuroglu, O., & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyls growth in Triticum aestivum and Cucumis sativus. Archives of Environmental Contamination and Toxicology, 43, 203–213.

    CAS  Article  Google Scholar 

  41. Murinda, S. E., Nguyen, L. T., Ivey, S. J., Almeida, R. A., & Oliver, S. P. (2002). Novel single-tube agar-based test system for motility enhancement and immunocapture of Escherichia coli O157:H7 by H7 flagellar antigen-specific antibodies. Journal of Clinical Microbiology, 40(12), 4685–4690.

    CAS  Article  Google Scholar 

  42. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    CAS  Article  Google Scholar 

  43. Navarro-Noyaa, Y. E., Hernández-Mendozaa, E., Morales-Jiméneza, J., Jan-Robleroa, J., Martínez-Romerob, E., & Hernández-Rodrígueza, C. (2012). Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings. Applied Soil Ecology, 62, 52–60.

    Article  Google Scholar 

  44. Neeru, N., Vivek, K., Rishi, K., & Wolfgancy, M. (2000). Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in p-responsive plant. Journal of Plant Nutrition and Soil Science, 163, 393–398.

    Article  Google Scholar 

  45. Nies, D. H. (1999). Microbial heavy metal resistance. Applied Microbiology and Biotechnology, 51, 730–750.

    CAS  Article  Google Scholar 

  46. Nies, D. H. (2000). Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles, 4, 77–82.

    CAS  Article  Google Scholar 

  47. Ozdemir, G., Ceyhan, N., Ozturk, T., Akirmak, F., & Cosar, T. (2004). Biosorption of chromium(VI), cadmium(II) and copper(II) by Pentoea sp. TEM18. Chemical Engineering Journal, 102, 249–253.

    CAS  Article  Google Scholar 

  48. Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.

    CAS  Article  Google Scholar 

  49. Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801.

    CAS  Article  Google Scholar 

  50. Rana, S., Bag, S. K., Jana, B. B., & Biswas, J. K. (2013). Seasonal distribution of cadmium among components of sewage treatment ponds: An eco-tech for heavy metal remediation. International Journal of Environmental Science and Technology, 10(5), 1103–1114.

    CAS  Article  Google Scholar 

  51. Segner, W. P., Schmidt, C. F., & Boltz, J. K. (1971). Minimal growth temperature, sodium chloride tolerance, pH sensitivity, and toxin production of marine and terrestrial strains of Clostridium botulinum type C. Journal of Applied Microbiology, 22(6), 1025–1029.

    CAS  Google Scholar 

  52. Singh, V., Chauhan, P. K., Kanta, R., Dhewa, T., & Kumar, V. (2010). Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. International Journal of Pharmceutical Sciences: Review and Research, 3, 164–167.

    CAS  Google Scholar 

  53. Sinha, S., & Mukherjee, S. K. (2009). Pseudomonas aeruginosa KUCd1, a possible candidate for cadmium bioremediation. Brazilian Journal of Microbiology, 40, 655–662.

    CAS  Article  Google Scholar 

  54. Skerman, V. B. D. (1967). A guide to the identification of the genera of bacteria. Baltimore, MD: The Williams & Wilkins Co.

    Google Scholar 

  55. Solano, B. R., Barriuso, J., & Gutiérrez Mañero, F. J. (2008). Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In I. Ahmad, J. Pichtel, & S. Hayat (Eds.), Plant-bacteria interactions: Strategies and techniques to promote plant growth (pp. 41–54). Weinheim: Wiley.

    Google Scholar 

  56. Spaenpen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiology Reviews, 31, 425–448.

    Article  Google Scholar 

  57. Sundaramoorthi, C., Vengadesh, P. K., Gupta, S., Karthick, K., & Tamilselvi, N. (2011). Production and charecterization of antibiotics from soil-isolated actinomycetes. International Research Journal of Pharmacy, 2(4), 114–118.

    Google Scholar 

  58. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42(2), 117–126.

    CAS  Article  Google Scholar 

  59. Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology, 49, 489–496.

    Article  Google Scholar 

  60. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    CAS  Article  Google Scholar 

  61. Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

    CAS  Article  Google Scholar 

  62. Whiting, S. N., De Souza, M. P., & Terry, N. (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environmental Science and Technology, 35(15), 3144–3150.

    CAS  Article  Google Scholar 

  63. Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., et al. (2016). Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation. Frontiers in Plant Science. doi:10.3389/fpls.2016.00755.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Kalyani for providing fund (No. 1R/URS/Env Mangt/2013) and all sorts of infrastructural support for carrying out the research. Sincere acknowledgement is also due to Dr. Ekramul Islam and Mr. Arindam Chakraborty, Department of Microbiology, University of Kalyani for their kind help in the process of bacterial identification.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Biswas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, J.K., Mondal, M., Rinklebe, J. et al. Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. Environ Geochem Health 39, 1583–1593 (2017). https://doi.org/10.1007/s10653-017-9950-5

Download citation

Keywords

  • Bioremediation
  • Bacteria
  • Trace metals
  • Tolerance
  • Growth promotion
  • Indole-3-acetic acid
  • Seed germination