Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1767–1784 | Cite as

Human predisposition to cognitive impairment and its relation with environmental exposure to potentially toxic elements

  • Marina M. S. Cabral PintoEmail author
  • A. Paula Marinho-Reis
  • Agostinho Almeida
  • Carlos M. Ordens
  • Maria M. V. G. Silva
  • Sandra Freitas
  • Mário R. Simões
  • Paula I. Moreira
  • Pedro A. Dinis
  • M. Luísa Diniz
  • Eduardo A. Ferreira da Silva
  • M. Teresa Condesso de Melo
Original Paper


New lines of evidence suggest that less than 10% of neurodegenerative diseases have a strict genetic aetiology and other factors may be prevalent. Environmental exposures to potentially toxic elements appear to be a risk factor for Parkinson’s, Alzheimer’s and sclerosis diseases. This study proposes a multidisciplinary approach combining neurosciences, psychology and environmental sciences while integrating socio-economic, neuropsychological, environmental and health data. We present the preliminary results of a neuropsychological assessment carried out in elderly residents of the industrial city of Estarreja. A battery of cognitive tests and a personal questionnaire were administered to the participants. Multivariate analysis and multiple linear regression analysis were used to identify potential relationships between the cognitive status of the participants and environmental exposure to potentially toxic elements. The results suggest a relationship between urinary PTEs levels and the incidence of cognitive disorders. They also point towards water consumption habits and profession as relevant factors of exposure. Linear regression models show that aluminium (R 2 = 38%), cadmium (R 2 = 11%) and zinc (R 2 = 6%) are good predictors of the scores of the Mini-Mental State Examination cognitive test. Median contents (µg/l) in groundwater are above admissible levels for drinking water for aluminium (371), iron (860), manganese (250), and zinc (305). While the World Health Organization does not provide health-based reference values for aluminium, results obtained from this study suggest that it may have an important role in the cognitive status of the elderly. Urine proved to be a suitable biomarker of exposure both to elements with low and high excretion rates.


Neurodegenerative diseases Environmental exposure Potentially toxic elements Urine Groundwater 



Funding for this research was provided by the Labex DRIIHM, Réseau des Observatoires Hommes-Millieux–Centre National de la Recherche Scientifique (ROHM–CNRS) and OHM.I-Estarreja and by the Foundation for Science and the Technology (SFRH/BPD/71030/2010 and the Projects UI/D/GEO/04035/2013 and UID/MAR/04292/2013). We thank the participants for taking part in this research and the local private institutions of social solidarity for the collaboration (Santa Casa Misericórdia de Estarreja, Associação Humanitária de Salreu, Centro Paroquial Social São Tomé de Canelas, Centro Paroquial Social Avanca, Fundação Cónego Filipe Figueiredo Beduíno, Centro Paroquial de Pardilhó). The authors are grateful to Eugénio Soares from the Central Laboratory of University of Aveiro. The manuscript benefited from careful and constructive reviews by Shweta Modgil and two anonymous reviewers.

Supplementary material

10653_2017_9928_MOESM1_ESM.xlsx (14 kb)
Supplementary material 1 (XLSX 14 kb)


  1. Afridi, H. I., Kazi, T. G., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., Baig, J. A., & Sarfraz, R. A. (2008). Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes research and clinical practice, 80(2), 280–288.Google Scholar
  2. Ahlskog, J. E. (2016). New and appropriate goals for parkinson disease physical therapy. JAMA Neurology, 73(3), 1–2.Google Scholar
  3. APA. (2016). Programa Operacional Temático Valorização do Território Eixo Prioritário III. Recuperação do Passivo Ambiental. Documento Enquadrador.
  4. Ashok, A., Rai, N. K., Tripathi, S., & Bandyopadhyay, S. (2014). Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicological Sciences, kfu208.Google Scholar
  5. Benzecri, F. (1980). Introduction à l’analyse des correspondances d’après un exemple de données médicales. Les cahiers de l’analyse des données, 5(3), 283–310.Google Scholar
  6. Bocca, B., Alimonti, A., Senofonte, O., Pino, A., Violante, N., Petrucci, F., et al. (2006). Metal changes in CSF and peripheral compartments of parkinsonian patients. Journal of the Neurological Sciences, 248(1), 23–30.Google Scholar
  7. Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y., Maerten, A., & Bannon, D. (2007). Metal transporters in intestine and brain: Their involvement in metal-associated neurotoxicities. Human and Experimental Toxicology, 26, 221–229.Google Scholar
  8. Breydo, L., & Uversky, V. N. (2011). Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics, 3(11), 1163–1180.Google Scholar
  9. Cabral Pinto, M. M. S., Almeida, A., Pinto, E., Freitas, S., Simões, M., Diniz, L., et al. (2015). Occupational and environmental exposure to Mn in manganese mining areas (South Portugal) and the occurrence of dementia. In 25th Alzheimer Europe Conference “Dementia: Putting strategies and research into practice”.Google Scholar
  10. Cabral Pinto, M. M. S., Freitas, S., Simões, M., Moreira, P. I., Dinis, L., & Ferreira da Silva, E. A. (2013). Neurodegenerative diseases in the Estarreja (Central Portugal) inhabitants and their potential relationship with trace elements in the environment—preliminary results. In 5th International conference on medical geology, 25–29 Aug, 2013, Virginia.Google Scholar
  11. Cachada, A., Pereira, M. E., Ferreira da Silva, E., & Duarte, A. C. (2012). Sources of potentially toxic elements and organic pollutants in an urban area subjected to an indus-trial impact. Environmental Monitoring and Assessment, 184, 15–32.Google Scholar
  12. Cerpa, W., Varela-Nallar, L., Reyes, A. E., Minniti, A. N., & Inestrosa, C. (2005). Is there a role for copper in neurodegenerativediseases? Molecular Aspects of Medicine, 26, 405–420.Google Scholar
  13. Chin-Chan, M., Navarro-Yepes, J., & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience, 9, 124.Google Scholar
  14. Coelho, P., Costa, S., Silva, S., Walter, A., Ranville, J., Sousa, A. C., et al. (2012). Metal (loid) levels in biological matrices from human populations exposed to mining contamination—Panasqueira Mine (Portugal). Journal of Toxicology and Environmental Health, 75, 893–908.Google Scholar
  15. Condesso de Melo, M. T., & Marques da Silva, M. A. (2008). The aveiro quaternary and cretaceous aquifers. In W. M. Edmunds & P. Shand (Eds.), The natural baseline quality of groundwater. Oxford: Blackwell Publishers.Google Scholar
  16. Costa, C., & Jesus-Rydin, C. (2001). Site investigation on heavy metals contaminated ground in Estarreja—Portugal. Engineering Geology, 60, 39–47.Google Scholar
  17. Dorne, J. L., Kass, G. E., Bordajandi, L. R., Amzal, B., Bertelsen, U., Castoldi, A. F., et al. (2011). Human risk assessment of heavy metals: Principles and applications. Metal Ions in Life Sciences, 8, 27–60.Google Scholar
  18. Elsner, R. J., & Spangler, J. G. (2005). Neurotoxicity of inhaled manganese: Public health danger in the shower? Medical Hypotheses, 65(3), 607–616.Google Scholar
  19. Ericson, I., Martí-Cid, R., Nadal, M., Van Bavel, B., Lindström, G., & Domingo, J. L. (2008). Human exposure to perfluorinated chemicals through the diet: Intake of perfluorinated compounds in foods from the Catalan (Spain) market. Journal of Agricultural and Food Chemistry, 56(5), 1787–1794.Google Scholar
  20. Exley, C. (2012). The coordination chemistry of aluminium in neurodegenerative disease. Coordination Chemistry Reviews, 256(19), 2142–2146.Google Scholar
  21. Exley, C., & House, E. R. (2012). Aluminium in the human brain (pp. 95–101). Vienna: Springer.Google Scholar
  22. Fabrizio, E., Vanacore, N., Valente, M., Rubino, A., & Meco, G. (2007). High prevalence of extrapyramidal signs and symptoms in a group of Italian dental technicians. BMC Neurology, 3, 7–24.Google Scholar
  23. Ferrer, I. (2012). Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. Progress in Neurobiology, 97(1), 38–51.Google Scholar
  24. Folstein, M., Folstein, S., & McHugh, P. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.Google Scholar
  25. Forte, G., Bocca, B., Senofonte, O., Petrucci, F., Brusa, L., Stanzione, P., et al. (2004). Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. Journal of Neural Transmission, 111(8), 1031–1040.Google Scholar
  26. Forte, G., Deiana, M., Pasella, S., Baralla, A., Occhineri, P., Mura, I., et al. (2014). Metals in plasma of nonagenarians and centenarians living in a key area of longevity. Experimental Gerontology, 60, 197–206.Google Scholar
  27. Freitas, S., Simões, M. R., Alves, L., & Santana, I. (2011). Montreal Cognitive Assessment (MoCA): Normative study for the Portuguese population. Journal of Clinical and Experimental Neuropsychology, 33(9), 989–996.Google Scholar
  28. Freitas, S., Simões, M. R., Alves, L., & Santana, I. (2013). Montreal Cognitive Assessment (MoCA): Validation study for mild cognitive impairment and Alzheimer´s disease. Alzheimer Disease and Associated Disorders, 27(1), 37–43.Google Scholar
  29. Freitas, S., Simões, M. R., Alves, L., & Santana, I. (2015). The relevance of sociodemographic and health variables on MMSE normative data. Applied Neuropsychology: Adults, 22(4), 311–319.Google Scholar
  30. Gaenslen, A., Unmuth, B., Godau, J., Liepelt, I., Di Santo, A., Schweitzer, K. J., et al. (2008). The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: A prospective blinded study. The Lancet Neurology, 7(5), 417–424.Google Scholar
  31. Ganrot, P. O. (1986). Metabolism and possible health effects of aluminum. Environmental Health Perspectives, 65, 363.Google Scholar
  32. Garret, C., Santos, F., Tracana, I., Barreto, J., Sobral, M., & Fonseca, R. (2008). Avaliação Clínica da Demência (Clinical Dementia Rating Scale). In Grupo de Estudos de Envelhecimento Cerebral e Demências (Study Group on Brain Aging and Dementia) (Ed.), Escalas e testes na demência (Scales and tests in dementia) (pp. 17–32). Lisbon: GEECD.Google Scholar
  33. Goldberg, D. P., Gater, R., Sartorius, N., Ustun, T., Piccinelli, M., Gureje, O., et al. (1997). The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychological Medicine, 27(01), 191–197.Google Scholar
  34. Gomes, C. M., & Wittung-Stafshede, P. (Eds.). (2010). Protein folding and metal ions: Mechanisms, biology and disease. Boca Raton: CRC Press.Google Scholar
  35. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Kortsha, G. G., et al. (1999). Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology, 20, 239–248.Google Scholar
  36. Goullé, J. P., Mahieu, L., Castermant, J., Neveu, N., Bonneau, L., Lainé, G., et al. (2005). Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Science International, 153(1), 39–44.Google Scholar
  37. Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London: Academic Press.Google Scholar
  38. Gupta, V. B., Anitha, S., Hegde, M. L., Zecca, L., Garruto, R. M., Ravid, R., et al. (2005). Aluminium in Alzheimer’s disease: Are we still at a crossroad? Cellular and Molecular Life Sciences CMLS, 62(2), 143–158.Google Scholar
  39. Hao, Z., Li, Y., Liu, Y., Li, H., Wang, W., & Yu, J. (2015). Hair elements and healthy aging: A cross-sectional study in Hainan Island, China. Environmental Geochemistry and Health, 38(3), 723–735. doi: 10.1007/s10653-015-9755-3.Google Scholar
  40. Hozumi, I., Hasegawa, T., Honda, A., Ozawa, K., Hayashi, Y., Hashimoto, K., et al. (2011). Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. Journal of the Neurological Sciences, 303(1), 95–99.Google Scholar
  41. Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566–572.Google Scholar
  42. Inácio, M., Neves, O., Pereira, V., & da Silva, E. F. (2014). Levels of selected potential harmful elements (PHEs) in soils and vegetables used in diet of the population living in the surroundings of the Estarreja Chemical Complex (Portugal). Applied Geochemistry, 44, 38–44.Google Scholar
  43. Johnson, F. O., & Atchison, W. D. (2009). The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. NeuroToxicology, 30(5), 761–765.Google Scholar
  44. Karagas, M. R., Stukel, T. A., Morris, J. S., Tosteson, T. D., Weiss, J. E., Spencer, S. K., et al. (2001). Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. American Journal of Epidemiology, 153(6), 559–565.Google Scholar
  45. Kasper-Sonnenberg, M., Sugiri, D., Wurzler, S., Ranft, U., Dickel, H., Wittsiepe, J., et al. (2011). Prevalence of nickel sensitization and urinary nickel content of children are increased by nickel in ambient air. Environmental Research, 111(2), 266–273.Google Scholar
  46. Kazi, T. G., Afridi, H. I., Kazi, N., Jamali, M. K., Arain, M. B., Jalbani, N., et al. (2008). Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biological Trace Element Research, 122(1), 1–18.Google Scholar
  47. Komatina, M. M. (2004). Medical geology—Effects of geological environments on human health. Developments in Earth & Environmental Sciences (Vol. 2). Amsterdam: Elsevier.Google Scholar
  48. Kozlowski, H., Janicka Klosb, A., Brasunb, J., Gaggelli, E., Valensinc, D., & Valensinc, J. (2009). Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordination Chemistry Reviews, 253, 2665–2685.Google Scholar
  49. Kuiper, N., Rowell, C., Nriagu, J., & Shomar, B. (2014). What do the trace metal contents of urine and toenail samples from Qatar’s farm workers bioindicate? Environmental Research, 131, 86–94.Google Scholar
  50. Leitão, T. B. E. (1996). Metodologia para a reabilitação de aquíferos poluídos. Ph.D. Thesis. Faculdade de Ciências da Universidade de Lisboa.Google Scholar
  51. Lemos, R., Duro, D., Simões, M. R., & Santana, I. (2014). The free and cued selective reminding test distinguishes frontotemporal dementia from Alzheimer’s disease. Archives of Clinical Neuropsychology, 29(7), 670–679.Google Scholar
  52. Liu, C. P., Luo, C. L., Gao, Y., Li, F. B., Lin, L. W., Wu, C. A., et al. (2010). Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution, 158(3), 820–826.Google Scholar
  53. Marchiset-Ferlay, N., Savanovitch, C., & Sauvant-Rochat, M. P. (2012). What is the best biomarker to assess arsenic exposure via drinking water? Environment International, 39(1), 150–171.Google Scholar
  54. Martyn, C. N., Osmond, C., Edwardson, J. A., Barker, D. J. P., Harris, E. C., & Lacey, R. F. (1989). Geographical relation between Alzheimer’s disease and aluminium in drinking water. The Lancet, 333(8629), 61–62.Google Scholar
  55. Maynard, C. J., Bush, A. I., Masters, C. L., Cappai, R., & Li, Q. X. (2005). Metals and amyloid-β in Alzheimer’s disease. International Journal of Experimental Pathology, 86(3), 147–159.Google Scholar
  56. Monnet-Tschudi, F., Zurich, M.-G., Boschat, C., Corbaz, A., & Honegger, P. (2006). Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Reviews on Environmental Health Reviews on Environmental Health, 21(2), 105–118.Google Scholar
  57. Moreira, P. I., Honda, K., Liu, Q., Santos, M. S., Oliveira, C. R., Aliev, G., et al. (2005). Oxidative stress: The old enemy in Alzheimer’s disease pathophysiology. Current Alzheimer Research, 2, 403–408.Google Scholar
  58. Moreira, P. I., Zhu, X., Lee, H.-G., Honda, K., Smith, M. A., & Perry, G. (2006). The (un)balance between metabolic and oxidative abnormalities and cellular compensatory responses in Alzheimer disease. Mechanisms of Ageing and Development, 127, 501–506.Google Scholar
  59. Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 2412–2414.Google Scholar
  60. Nasreddine, Z., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. American Geriatrics Society, 53(4), 695–699.Google Scholar
  61. Ndilila, W., Callan, A. C., McGregor, L. A., Kalin, R. M., & Hinwood, A. L. (2014). Environmental and toenail metals concentrations in copper mining and non mining communities in Zambia. International Journal of Hygiene and Environmental Health, 217(1), 62–69.Google Scholar
  62. Nriagu, G. (2007). Zinc toxicity in humans (pp. 1–7). Elsevier.
  63. Ordens, C. M. (2007). Estudo da contaminação do aquífero superior na região de Estarreja. Unpublished M.Sc. thesis. Coimbra University. Accessed 11 Mar 2015.
  64. Ordens, C. M., Condesso de Melo, M. T., Grangeia, C., & Marques da Silva, M. A. (2007). Groundwater–surface water interactions near a Chemical Complex (Estarreja, Portugal)—Implications on groundwater quality. In Proceedings 35th congress of international association of hydrogeologists, Lisbon, Portugal, 17–21 Sept.Google Scholar
  65. Pereira, M. E., Lillebø, A. I., Pato, P., Válega, M., Coelho, J. P., Lopes, C., et al. (2009). Mercury pollution in Ria de Aveiro (Portugal): A review of the system assessment. Environment Monitoring and Assessment, 155, 39–49.Google Scholar
  66. Perl, D. P., & Moalem, S. (2006). Aluminum and Alzheimer’s disease, a personal perspective after 25 years. Journal of Alzheimer’s Disease, 9(3), 291–300.Google Scholar
  67. Pocinho, M. T. S., Farate, C., Dias, C. A., Lee, T. T., & Yesavage, J. A. (2009). Clinical and psychometric validation of the Geriatric Depression Scale (GDS) for Portuguese Elders. Clinical Gerontologist, 32, 223–236.Google Scholar
  68. Polizzi, S., Pira, E., Ferrara, M., Bugiani, M., Papaleo, A., Albera, R., et al. (2002). Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology, 23(6), 761–774.Google Scholar
  69. Portuguese Decree 236. (1998). Portuguese legislation on water quality. Diário da República IA (pp. 3676–3722).
  70. Portuguese Decree 306. (2007). Portuguese legislation on water quality. Diário da República IA (pp. 5747–5765).
  71. Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, 93–117.Google Scholar
  72. Reis, A. P., Costa, S., Santos, I., Patinha, C., Noack, Y., Wragg, J., et al. (2015). Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city. Environmental Geochemistry and Health, 37(4), 725–744.Google Scholar
  73. Reis, A. P., Menezes de Almeida, L., Ferreira da Silva, E., Sousa, A. J., Patinha, C., & Fonseca, E. C. (2007). Assessing the geochemical inherent quality of natural soils in the Douro river basin for grapevine cultivation using data analysis and geostatistics. Geoderma, 141, 370–383.Google Scholar
  74. Reis, A. P., Patinha, C., Ferreira da Silva, E., Sousa, A., Figueira, R., Sérgio, C., et al. (2010). Assessment of human exposure to environmental heavy metals in soils and bryophytes of the central region of Portugal. International Journal of Environmental Health Research, 20(2), 87–113. doi: 10.1080/09603120903394649.Google Scholar
  75. Reis, A. P., Sousa, A. J., Ferreira Da Silva, E., Patinha, C., & Fonseca, E. C. (2004). Combining multiple correspondence analysis with factorial kriging analysis for geochemical mapping of the gold-silver deposit at Marrancos (Portugal). Applied Geochemistry, 19(4), 623–631. doi: 10.1016/j.apgeochem.2003.09.003.Google Scholar
  76. Roberts, N. B., Clough, A., Bellia, J. P., & Kim, J. Y. (1998). Increased absorption of aluminium from a normal dietary intake in dementia. Journal of Inorganic Biochemistry, 69(3), 171–176.Google Scholar
  77. Rodella, L. S., Ricci, F., Borsani, E., Stacchiotti, A., Foglio, E., Favero, G., et al. (2008). Aluminium exposure induces Alzheimer’ disease-like histopathological alterations in mouse brain. Histology and Histopathology, 23, 433–439.Google Scholar
  78. Rogers, M. A., & Simon, D. G. (1999). A preliminary study of dietary aluminium intake and risk of Alzheimer’s disease. Age and Ageing, 28(2), 205–209.Google Scholar
  79. Santana, I., Vicente, M., Freitas, S., Santiago, B., & Simões, M. R. (2015). Avaliação Clínica da Demência (CDR) (Clinic Dementia Rating, CDR). In Mário R. Simões, Isabel Santana e Grupo de Estudos de Envelhecimento Cerebral e Demência (Eds.), Escalas e Testes na Demência (3ª. edição, pp. 12–17) (Scales and tests in dementia, 3rd edn.). Lisboa: Novartis.Google Scholar
  80. Simões, M. R., Freitas, S., Santana, I., Firmino, H., Martins, C., Nasreddine, Z., et al. (2008). Montreal Cognitive Assessment (MoCA): Versão portuguesa (Montreal Cognitive Assessment (MoCA): Portuguese version). Coimbra: Serviço de Avaliação Psicológica da Faculdade de Psicologia e de Ciências da Educação da Universidade de Coimbra (Psychological Assessment Department, Faculty of Psychology and Educational Sciences, University of Coimbra).Google Scholar
  81. Simões, M. R., Prieto, G., Pinho, M. S., & Firmino, H. (2015). Geriatric Depression Scale (GDS-30). In Mário R. Simões, Isabel Santana e Grupo de Estudos de Envelhecimento Cerebral e Demência (Eds.), Escalas e Testes na Demência (3ª. edição, pp. 128–133) (Scales and tests in dementia, 3rd edn.). Lisboa: Novartis.Google Scholar
  82. Tartaglione, A. M., Venerosi, A., & Calamandrei, G. (2015). Early-life toxic insults and onset of sporadic neurodegenerative diseases—an overview of experimental studies. In Neurotoxin Modeling of Brain Disorders—Life-long Outcomes in Behavioral Teratology (pp. 231–264). Springer International Publishing.Google Scholar
  83. Teixeira, C., & Assunção, C. F. T. (1963). Over geological map, 13C. Lisboa: Instituto Geográfico e Cadastral.Google Scholar
  84. Van der Voet, G. B. (1992). Intestinal absorption of aluminum. In Isaacson, R. L., & Jensen, K. F. (Eds.), The vulnerable brain and environmental risks (pp. 35–47). Plenum Press, Springer US.Google Scholar
  85. Van der Weijden, C., & Pacheco, F. A. L. (2006). Hydrogeochemistry in the Vouga River basin (central Portuhal): Pollution and chemical weathering. Applied Geochemistry, 21, 580–613.Google Scholar
  86. Viaene, M. K., Masschelein, R., Leenders, J., De Groof, M., Swerts, L. J., Roels, H., et al. (2000). Neurobehavioural effects of occupational exposure to cadmium: A cross sectional epidemiological study. Occupational and Environmental Medicine, 57, 19–27.Google Scholar
  87. Wang, B., & Du, Y. (2013). Review article cadmium and its neurotoxic effects. Oxidative Medicine and Cellular Longevity. doi: 10.1155/2013/898034.Google Scholar
  88. World Health Organisation. (2011). Guidelines for drinking-water quality (4th ed). 28 Apr 2016.
  89. Yegambaram, M., Manivannan, B., Beach, T. G., & Halden, R. U. (2015). Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Current Alzheimer Research, 12(2), 116–146.Google Scholar
  90. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., et al. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49.Google Scholar
  91. Yokel, R. A. (2006). Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. Journal of Alzheimer’s Disease, 10(2–3), 223–253.Google Scholar
  92. Zatta, P., Lucchini, R., Van Rensburg, S. J., & Taylor, A. (2003). The role of metals in neurodegenerative processes: Aluminum, manganese, and zinc. Brain Research Bulletin, 62, 15–28.Google Scholar
  93. Zhang, B., Cheng, X. R., da Silva, I. S., Hung, V. W., Veloso, A. J., Angnes, L., et al. (2013). Electroanalysis of the interaction between (−)-epigallocatechin-3-gallate (EGCG) and amyloid-β in the presence of copper. Metallomics, 5(3), 259–264.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marina M. S. Cabral Pinto
    • 1
    • 2
    • 3
    Email author
  • A. Paula Marinho-Reis
    • 1
  • Agostinho Almeida
    • 4
  • Carlos M. Ordens
    • 5
  • Maria M. V. G. Silva
    • 3
    • 6
  • Sandra Freitas
    • 2
    • 7
  • Mário R. Simões
    • 7
    • 8
  • Paula I. Moreira
    • 2
    • 9
  • Pedro A. Dinis
    • 3
    • 10
  • M. Luísa Diniz
    • 1
  • Eduardo A. Ferreira da Silva
    • 1
  • M. Teresa Condesso de Melo
    • 11
  1. 1.Department of GeosciencesGeobiotec Research Centre, University of AveiroAveiroPortugal
  2. 2.CNC-Center for Neuroscience and Cell Biology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Earth SciencesUniversity of CoimbraCoimbraPortugal
  4. 4.LAQV/REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of PharmacyPorto UniversityPortoPortugal
  5. 5.University College London AustraliaAdelaideAustralia
  6. 6.CEMUCUniversity of CoimbraCoimbraPortugal
  7. 7.Centro de Investigação do Núcleo de Estudos e Intervenção Cognitivo Comportamental (CINEICC)Universidade de CoimbraCoimbraPortugal
  8. 8.Faculdade de Psicologia e de Ciências da Educação da Universidade de Coimbra (FPCE-UC)CoimbraPortugal
  9. 9.Laboratory of Physiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  10. 10.MARE - Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
  11. 11.CEris, DECivil, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations