Skip to main content

Advertisement

Log in

Importance of background values in assessing the impact of heavy metals in river ecosystems: case study of Tisza River, Serbia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The main objective of this paper is to evaluate how a choice of different background values may affect assessing the anthropogenic heavy metal pollution in sediments from Tisza River (Serbia). The second objective of this paper is to underline significance of using geochemical background values when establishing quality criteria for sediment. Enrichment factor (EF), geoaccumulation index (I geo), pollution load index (PLI), and potential ecological risk index (PERI) were calculated using different background values. Three geochemical (average metal concentrations in continental crust, average metal concentrations in shale, and average metal concentrations in non-contaminated core sediment samples) and two statistical methods (delineation method and principal component analyses) were used for calculating background values. It can be concluded that obtained information of pollution status can be more dependent on the use of background values than the index/factor chosen. The best option to assess the potential river sediment contamination is to compare obtained concentrations of analyzed elements with concentrations of mineralogically and texturally comparable, uncontaminated core sediment samples. Geochemical background values should be taken into account when establishing quality criteria for soils, sediments, and waters. Due to complexity of the local lithology, it is recommended that environmental monitoring and assessment include selection of an appropriate background values to gain understanding of the geochemistry and potential source of pollution in a given environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adaikpoh, E. O., Nwajei, G. E., & Ogala, J. (2005). Trace metals concentrations in coal and sediments from river Ekulu in Enugu, Coal City of Nigeria. Journal of Applied Sciences and Environmental Management, 9(3), 5–8.

    Google Scholar 

  • Akoto, O., Bruce, T. N., & Darko, G. (2008). Trace metals pollution profiles in streams serving the Owabi reservoir. African Journal of Environmental Science and Technology, 2(11), 354–359.

    Google Scholar 

  • Aloupi, M., & Angelidis, M. O. (2001). Geochemistry of natural and anthropogenic metals in the coastal sediments of the island of Lesvos, Aegean Sea. Environmental Pollution, 113(2), 211–219.

    Article  CAS  Google Scholar 

  • Alves, S. I. R., Sampaio, F. C., Nadal, M., Schuhmacher, M., Domingo, L. J., & Segura-Muñoz, I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environmental Research, 133, 149–155.

    Article  CAS  Google Scholar 

  • Birch, F. G., & Olmos, A. M. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. Journal of Marine Science, 65(8), 1407–1413.

    CAS  Google Scholar 

  • Chapman, P. M., Wang, F., Janssen, C., Persoone, G., & Allen, H. E. (1998). Ecotoxicology of metals in aquatic sediments: Binding and release, bioavailability, risk assessment, and remediation. Canadian Journal of Fisheries and Aquatic Sciences, 55(10), 2221–2243.

    Article  CAS  Google Scholar 

  • Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30(1/2), 34–45.

    Article  CAS  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, K. N. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science & Biotechnology, 12, 335–353.

    Article  CAS  Google Scholar 

  • Ergin, M., Saydam, C., Basturk, O., Erdem, E., & Yoruk, R. (1991). Trace metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the North-eastern Sea of Marmara. Chemical Geology, 91(3), 269–285.

    Article  CAS  Google Scholar 

  • Fairbrother, A., Wenstel, R., Sappington, K., & Wood, W. (2007). Framework for metals risk assessment. Ecotoxicology and Environmental Safety, 68(2), 145–227.

    Article  CAS  Google Scholar 

  • Fok, L., Peart, M. R., & Chen, J. (2013). The influence of geology and land use on the geochemical baselines of the East River basin, China. CATENA, 101, 212–225.

    Article  CAS  Google Scholar 

  • Gałuszka, A. (2006). Methods of determining geochemical background in environmental studies. Problems of Landscape Ecology, 16(1), 507–519.

    Google Scholar 

  • Gałuszka, A., & Migaszewski, M. Z. (2011). Geochemical background—An environmental perspective. Mineralogia, 42(1), 7–17.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hawkes, H. E., & Webb, J. S. (1962). Geochemistry in mineral exploration. New York: Harper.

    Google Scholar 

  • Horowitz, A. J., & Elrick, K. (1987). The relation of stream sediment surface area, grain size, and composition to trace element chemistry. Applied Geochemistry, 2, 437–451.

    Article  CAS  Google Scholar 

  • Hussain, R., Khattak, S. A., Shah, T. M., & Ali, L. (2015). Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. Journal of Soils and Sediments, 15, 1119–1129.

    Article  CAS  Google Scholar 

  • Jiang, J., Wang, J., Liu, S., Lin, C., He, M., & Liu, X. (2013). Background, baseline, normalization, and contamination of heavy metals in the Liao River Watershed sediments of China. Journal of Asian Earth Sciences, 73, 87–94.

    Article  Google Scholar 

  • Jović, V., Vasić, N., Milovanović, D., Rabrenović, D., & Gajić, V. (2008). Geohemijske i sedimentološke karakteristike recentnih sedimenata kao ekološki parametri vode donjeg toka Dunava u Srbiji. Ecologica, 15, 71–86.

    Google Scholar 

  • Jung, H. S., Lim, D., Xu, Z., & Kang, J. H. (2014). Quantitative compensation of grain-size effects in elemental concentration: A Korean coastal sediments case study. Estuarine, Coastal and Shelf Science, 151, 69–77.

    Article  CAS  Google Scholar 

  • Laszlo, F. (2015). Pollution by heavy metals in the Danube River Basin. In I. Liska (Ed.), The Danube River Basin (pp. 85–95). Berlin: Springer.

    Google Scholar 

  • Loring, D. H. (1990). Lithium—A new approach for the granulometric normalization of trace metal data. Marine Chemistry, 29, 155–168.

    Article  CAS  Google Scholar 

  • Loska, K., & Wiechula, D. (2003). Application of principal component analysis for the estimation of source of trace metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8), 723–733.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31.

    Article  CAS  Google Scholar 

  • Marrugo-Negretea, J., Pinedo-Hernándeza, J., & Díezb, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    Article  CAS  Google Scholar 

  • Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology, 39(9), 990–1000.

    Article  CAS  Google Scholar 

  • Milačić, R., Ščančar, J., Murko, S., Kocman, D., & Horvat, M. (2010). A complex investigation of the extent of pollution in sediments of the Sava River. Part 1: Selected elements. Environmental Monitoring and Assessment, 163(1–4), 263–275.

    Article  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Müller, G. (1979). Trace metals in the sediment of the rhine-changes seity. Umsch Wiss Tech, 79(24), 778–783.

    Google Scholar 

  • Nováková, T., Grygar, M. T., Kotková, K., Elznicová, J., Strnad, L., & Mihaljevič, M. (2015). Pollution assessment using local enrichment factors: The Berounka River (Czech Republic). Journal of Soils and Sediments, 16(3), 1081–1092.

    Article  CAS  Google Scholar 

  • Paula Filho, F. J., Valente Marins, R., Drude de Lacerda, L., Aguiar, E. J., & Peres, T. F. (2015). Background values for evaluation of trace metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Marine Pollution Bulletin, 91(2), 424–428.

    Article  CAS  Google Scholar 

  • Pekey, H., Karakaş, D., Ayberk, S., Tolun, L., & Bakoglu, M. (2004). Ecological risk assessment using trace elements from surface sediments of Izmit Bay (Northeastern Marmara Sea) Turkey. Marine Pollution Bulletin, 48(9–10), 946–953.

    Article  CAS  Google Scholar 

  • Qinna, Z., Qixin, X., & Kai, Y. (2005). Application of potential ecological risk index in soil pollution of typical polluting industries. Journal of East China Normal University (Natural Science), 1, 110–115.

    Google Scholar 

  • Qu, C., Li, B., Wu, H., Wang, S., & Li, F. (2015). Probabilistic ecological risk assessment of trace metals in sediments from China’s major aquatic bodies. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-015-1087-4.

    Article  Google Scholar 

  • Reimann, C., & Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337, 91–107.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 1–16.

    Article  CAS  Google Scholar 

  • Reza, R., & Singh, G. (2010). Trace metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 7(4), 785–792.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): An assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.

    Article  CAS  Google Scholar 

  • Sakan, M. S., Djordjevic, S. D., Manojlović, D. D., & Polić, S. P. (2009). Assessment of heavy metal pollutants accumulation in the Tisza river sediments. Journal of Environmental Management, 90, 3382–3390.

    Article  CAS  Google Scholar 

  • Sakan, M. S., Sakan, M. N., & Djordjevic, S. D. (2013). Trace element study in Tisza River and Danube alluvial sediment in Serbia. International Journal of Sediment Research, 28(2), 234–245.

    Article  Google Scholar 

  • Sakan, S., Dević, G., Relić, D., Anđelković, I., Sakan, N., & Ðorđević, D. (2015). Evaluation of sediment contamination with heavy metals: The importance of determining appropriate background content and suitable element for normalization. Environmental Geochemistry and Health, 37, 97–113.

    Article  CAS  Google Scholar 

  • Serbian regulation of limit values pollutant substances into surface water, groundwater and sediments and the deadlines for their attaining “Off. Gazette of RS” No. 50/12.

  • Simonović, P. (2000). The status of stocks of particular fish species in the River Tisza after the cyanide spill. Acta Biologica Iugoslavica: Ichthyologia Belgrade, 32, 83–91.

    Google Scholar 

  • Song, Y., Choi, M. S., Lee, J. Y., & Jang, D. J. (2014). Regional background concentrations of trace metals (Cr Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Science of the Total Environment, 482–483, 80–91.

    Article  CAS  Google Scholar 

  • Štrbac, S. (2014). The content and mobility of heavy metals and organic compounds in the ecosystem of the Tisza River. Doctoral dissertation. University of Belgrade, Belgrade.

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285.

    Article  CAS  Google Scholar 

  • Tomilson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in assessment of trace metals in the estuaries and the formation of pollution index. Helgoland Marine Research, 33(1), 566–575.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of the Geological Society of America, 72(2), 175–191.

    Article  CAS  Google Scholar 

  • Varol, M., & Şen, B. (2012). Assessment of nutrient and trace metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA, 92, 1–10.

    Article  CAS  Google Scholar 

  • Vasić, N., Kašanin Grubin, M. (2015). Importance of background samples for understanding of the geochemical status of recent river sediments—Example of Sava, Trgoviški Timok and right tributaries of Djerdap lake. In 7th Symposium chemistry and environmental protection, pp. 70–71

  • Vignati, D. A. L., Secrieru, D., Bogatova, Y. I., Dominik, J., Céréghino, R., Berlinsky, N. A., et al. (2013). Trace element contamination in the arms of the Danube Delta (Romania/Ukraine): Current state of knowledge and future needs. Journal of Environmental Management, 125, 169–178.

    Article  CAS  Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of trace metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51(8), 633–642.

    Article  CAS  Google Scholar 

  • Yang, S. Y., Jung, H. S., Lim, D. I., & Li, C. X. (2003). A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Science Reviews, 63, 93–120.

    Article  CAS  Google Scholar 

  • Yaqin, J. I., Yinchang, F., Jianhi, W. U., Tan, Z. H. U., Zhipeng, B., & Chiqing, D. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20, 571–578.

    Article  Google Scholar 

  • Zahra, A., Hashmi, M. Z., Malik, R. N., & Ahmed, Z. (2014). Enrichment and geo-accumulation of trace metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Science of the Total Environment, 470–471, 925–933.

    Article  CAS  Google Scholar 

  • Zhang, C. (2006). Basics of environmental sampling and analysis, fundamentals of environmental sampling and analysis. Hoboken: Wiley.

    Google Scholar 

Download references

Acknowledgements

Research was supported by the Ministry of Education and Science of the Republic of Serbia, Grants 176006 and 176019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Štrbac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štrbac, S., Kašanin Grubin, M. & Vasić, N. Importance of background values in assessing the impact of heavy metals in river ecosystems: case study of Tisza River, Serbia. Environ Geochem Health 40, 1247–1263 (2018). https://doi.org/10.1007/s10653-017-0053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0053-0

Keywords

Navigation