Skip to main content

In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute?

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Seaweed baths containing Fucus serratus Linnaeus are a rich source of iodine which has the potential to increase the urinary iodide concentration (UIC) of the bather. In this study, the range of total iodine concentration in seawater (22–105 µg L−1) and seaweed baths (808–13,734 µg L−1) was measured over 1 year. The seasonal trend shows minimum levels in summer (May–July) and maximum in winter (November–January). The bathwater pH was found to be acidic, average pH 5.9 ± 0.3. An in vivo study with 30 volunteers was undertaken to measure the UIC of 15 bathers immersed in the bath and 15 non-bathers sitting adjacent to the bath. Their UIC was analysed pre- and post-seaweed bath and corrected for creatinine concentration. The corrected UIC of the population shows an increase following the seaweed bath from a pre-treatment median of 76 µg L−1 to a post-treatment median of 95 µg L−1. The pre-treatment UIC for both groups did not indicate significant difference (p = 0.479); however, the post-treatment UIC for both did (p = 0.015) where the median bather test UIC was 86 µg L−1 and the non-bather UIC test was 105 µg L−1. Results indicate the bath has the potential to increase the UIC by a significant amount and that inhalation of volatile iodine is a more significant contributor to UIC than previously documented.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ANOVA:

Analysis of variance

CV:

Coefficient of variation

DW:

Dry weight

IDD:

Iodine deficiency disorders

IO3 :

Iodate

I :

Iodide

I2 :

Iodine

SD:

Standard deviation

SK:

Sandell–Kolthoff

UIC:

Urinary iodine concentration

WHO:

World Health Organisation

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2004). Public health statement iodine. Division of toxicology. http://www.atsdr.cdc.gov/ToxProfiles/tp158-c1-b.pdf, Accessed 29 Sept 2016.

  • Ajjan, R. A., Kamaruddin, N. A., Crisp, M., Watson, P. F., Ludgate, M., & Weetman, A. P. (1998). Regulation and tissue distribution of the human sodium iodide symporter gene. Clinical Endocrinology, 49, 517–523.

    CAS  Article  Google Scholar 

  • Albèr, C., Buraczewska-Norin, I., Kocherbitov, V., Saleem, S., Lodén, M., & Engblom, J. (2014). Effects of water activity and low molecular weight humectants on skin permeability and hydration dynamics—a double-blind, randomized and controlled study. International Journal of Cosmetic Science, 36, 412–418.

    Article  Google Scholar 

  • Boothman, S. (2009). Iodine white paper: The use of iodine in wound therapy. http://www.systagenix.co.uk/cms/uploads/1042_Iodine_White_Paper_A5_(INT)LP_003.pdf. Accessed 29 Sept 2016.

  • Bruchertseifer, H., Cripps, R., Guentay, S., & Jaeckel, B. (2003). Analysis of iodine in aqueous solutions. Analytical and Bioanalytical Chemistry, 375(8), 1107–1110.

    CAS  Article  Google Scholar 

  • Brudecki, K., Szufa, K., & Mietelsk, J. W. (2017). 131I age-dependent inhalation dose in Southern Poland from Fukushima accident. Radiation and Environmental Biophysics, 56, 9–17.

    CAS  Article  Google Scholar 

  • Chance, R., Baker, A. R., Küpper, F. C., Hughes, C., Kloareg, B., & Malin, G. (2009). Release and transformations of inorganic iodine by marine macroalgae. Estuarine, Coastal and Shelf Science, 82(3), 406–414.

    CAS  Article  Google Scholar 

  • de Benoist, B., McLean, E., Andersson, M., & Rogers, L. (2008). Iodine deficiency in 2007: Global progress since 1993. Food and Nutrition Bulletin, 29(3), 195–202.

    Article  Google Scholar 

  • Dunn, J. T., Crutchfield, H. E., Gutekunst, R., & Dunn, A. D. (1993). Methods for measuring iodine in urine. Netherlands: ICCIDD/UNICEF/WHO.

    Google Scholar 

  • Fuge, R., & Johnson, C. C. (1986). The geochemistry of iodine-a review. Environmental Geochemistry and Health, 8, 31–54.

    CAS  Article  Google Scholar 

  • Gall, E. A., Küpper, F. C., & Kloareg, B. (2004). A survey of iodine content in Laminaria digitata. Botanica Marina, 47, 30–37.

    Google Scholar 

  • Goldsmith, L. A. (1983). Biochemistry and physiology of the skin. Oxford: Oxford University Press.

    Google Scholar 

  • Ito, K., & Hirokawa, T. (2009). Iodine and iodine species in seawater: Speciation, distribution, and dynamics. In V. Preedy, G. Burrow & R. R. Watson (Eds.), Comprehensive handbook of iodine (pp. 83–91). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Kim, M.-K., Dubacq, J.-P., Thomas, J.-C., & Giraud, G. (1996). Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry, 43(1), 49–55.

    CAS  Article  Google Scholar 

  • Kubota, S., Endo, Y., & Kubota, M. (2013). Effect of upper torso inclination in Fowler’s position on autonomic cardiovascular regulation. Journal of Physiological Sciences, 63, 369–376.

    Article  Google Scholar 

  • Li, H.-B., Xu, X.-R., & Chen, F. (2009). Determination of iodine in seawater: Methods and applications. In V. Preedy, G. Burrow & R. R. Watson (Eds.), Comprehensive handbook of iodine (pp. 2–13). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Marsham, S., Scott, G. W., & Tobin, M. L. (2007). Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chemistry, 100(2007), 1331–1336.

    CAS  Article  Google Scholar 

  • Miller, K. L., Coen, P. E., White, W. J., Hurst, W. J., Achey, B. E., & Max Lang, C. (1989). Effectiveness of skin absorption of tincture of I in blocking radioiodine from the human thyroid gland. Health Physics, 56(6), 911–914.

    CAS  Article  Google Scholar 

  • Mina, A., Favaloro, E. J., & Koutts, J. (2011). A robust method for testing urinary iodine using a microtitre robotic system. Journal of Trace Elements in Medicine and Biology, 25(4), 213–217.

    CAS  Article  Google Scholar 

  • Morgan, A., Morgan, D. J., & Black, A. (1968). A study of the deposition, translocation and excretion of radioiodine inhaled as iodine vapour. Health Physics, 15, 313–322.

    CAS  Article  Google Scholar 

  • Morrissey, J., Kraan, S., & Guiry, M. D. (2001). A guide to commercially important seaweeds on the Irish coast. Co. Dublin, Ireland: Bord Iascaigh Mhara/Irish Sea Fisheries Board.

    Google Scholar 

  • Muramatsu, Y., & Wedepohl, K. H. (1998). The distribution of iodine in the earth’s crust. Chemical Geology, 147(3–4), 201–216.

    CAS  Article  Google Scholar 

  • Nauman, J., & Wolff, J. (1993). Iodide prophylaxis in Poland after the Chernobyl reactor accident: Benefits and risks. American Journal of Medicine, 94, 524–532.

    CAS  Article  Google Scholar 

  • Nitschke, U., & Stengel, D. B. (2015). A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chemistry, 172, 326–334.

    CAS  Article  Google Scholar 

  • O’Sullivan, A. M., O’Callaghan, Y. C., O’Grady, M. N., Queguineur, D., Hanniffy, D. J., Troy, D. J., et al. (2011). In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chemistry, 126, 1064–1070.

    Article  Google Scholar 

  • Ohashi, T., Yamaki, M., Pandav, C. S., Karmarkar, M. G., & Minoru, I. (2000). Simple microplate method for determination of urinary iodine. Clinical Chemistry, 46(4), 529–536.

    CAS  Google Scholar 

  • Patti, F., Jeanmaire, L., Masson, M., Pinton, Ph, & Garcet, M. (1990). Temporal variations of iodine129, potassium40 and technetium99 concentrations in Fucus serratus in the English Channel. Journal of Radioanalytical and Nuclear Chemistry, 142(2), 467–480.

    CAS  Article  Google Scholar 

  • Peinado, I., Girón, J., Koutsidis, G., & Ames, J. M. (2014). Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Research International, 66, 36–44.

    CAS  Article  Google Scholar 

  • Risher, J. F., & Keith, L. S. (2009). Iodine and inorganic iodides: human health aspects. Geneva: World Health Organization.

    Google Scholar 

  • Routh, H. B., & Bhowmik, K. R. (1996). A glossary of concepts relating to balneology, mineral water, and the spa. Clinics in Dermatology, 14(6), 549–550.

    Article  Google Scholar 

  • Rupérez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry, 79(1), 23–26.

    Article  Google Scholar 

  • Silva, C. L., Topgaard, D., Kocherbitov, V., Sousa, J. J. S., Pais, A. A. C. C., & Sparr, E. (2007). Stratum corneum hydration: Phase transformations and mobility in stratum corneum, extracted lipids and isolated corneocytes. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1768(11), 2647–2659.

    CAS  Article  Google Scholar 

  • Smyth, P., Burns, R., Casey, M., Mullan, K., O’Herlihy, C., & O’Dowd, C. (2016). Iodine status over two decades: Influence of seaweed exposure. Irish Medical Journal, 109(6), 422.

    Google Scholar 

  • Smyth, P. P., Burns, R., Huang, R. J., Hoffman, T., Mullan, K., Graham, U., et al. (2011). Does iodine gas released from seaweed contribute to dietary iodine intake? Environmental Geochemistry and Health, 33(4), 389–397.

    CAS  Article  Google Scholar 

  • Soldin, O. P. (2002). Controversies in urinary iodine determinations. Clinical Biochemistry, 35(8), 575–579.

    CAS  Article  Google Scholar 

  • Sparr, E., & Wennerström, H. (2001). Responding phospholipid membranes—interplay between hydration and permeability. Biophysical Journal, 81(2), 1014–1028.

    CAS  Article  Google Scholar 

  • Teas, J., Pino, S., Critchley, A., & Braverman, L. E. (2004). Variability of iodine content in common commercially available edible seaweeds. Thyroid, 14(10), 836–841.

    CAS  Article  Google Scholar 

  • van Netten, C., Hoption Cann, S. A., Morley, D. R., & van Netten, J. P. (2000). Elemental and radioactive analysis of commercially available seaweed. Science of the Total Environment, 255(1–3), 169–175.

    Article  Google Scholar 

  • Westby, T., Duignan, G., Smyth, T., & Cadogan, A. (2016). Method validation and determination of total iodine in seaweed bathwater. Botanica Marina, 59(4), 241–249.

    Google Scholar 

  • WHO (2004). Iodine status worldwide WHO global database on iodine deficiency. http://apps.who.int/iris/bitstream/10665/43010/1/9241592001.pdf. Accessed 29 Sept 2016.

  • WHO (2007). Assessment of the iodine deficiency disorders and monitoring their elimination. A guide for programme managers. http://apps.who.int/iris/bitstream/10665/43781/1/9789241595827_eng.pdf. Accessed 19 Oct 2016.

  • Zheng, J., Takata, H., Tagami, K., Aono, T., Fujita, K., & Uchida, S. (2012). Rapid determination of total iodine in Japanese coastal seawater using SF-ICP-MS. Microchemical Journal, 100, 42–47.

    CAS  Article  Google Scholar 

  • Zimmermann, M. B. (2008). Iodine requirements and the risks and benefits of correcting iodine deficiency in populations. Journal of Trace Elements in Medicine and Biology, 22, 81–92.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by a President’s Bursary Award from the Institute of Technology Sligo. Seaweed samples and seaweed baths for the in vivo study were generously provided by Voya Seaweed Baths, Sligo. We acknowledge the technical assistance of Noreen Montgomery and Lydia Kirk of Sligo University Hospital and Dr James Murphy and Marcus Colon at Institute of Technology Sligo. We wish to also thank the volunteers who participated in the in vivo study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Duignan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westby, T., Cadogan, A. & Duignan, G. In vivo uptake of iodine from a Fucus serratus Linnaeus seaweed bath: does volatile iodine contribute?. Environ Geochem Health 40, 683–691 (2018). https://doi.org/10.1007/s10653-017-0015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0015-6

Keywords

  • Seaweed bath thalassotherapy
  • Fucus serratus Linnaeus
  • pH
  • Iodine
  • Urinary iodine
  • Inhalation