Environmental Geochemistry and Health

, Volume 40, Issue 2, pp 609–623 | Cite as

Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications

  • Priyanka Patel
  • N. Janardhana RajuEmail author
  • B. C. Sundara Raja Reddy
  • U. Suresh
  • D. B. Sankar
  • T. V. K. Reddy
Original Paper


The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.


Swarnamukhi River Suspended sediments Heavy metal Sediment quality guidelines Contamination factor Heavy metal pollution index 



The author (NJR) is indebted to the University Grants Commission (UGC) for financial support (1) under Major Research Project {(F. No. 42-413/2013 (SR)}; (2) under twenty-first century Indo-US Research Initiative 2014 to Jawaharlal Nehru University, New Delhi, and Mississippi State University, USA, in the Project “Clean Energy and Water Initiatives” {UGC No. F.194-1/2014 (IC)}. NJR is also thankful to DST (Department of Science and Technology) for providing research Grants under Purse-Phase II and Jawaharlal Nehru University for providing UPOE II (ID 170) funds under holistic development program.


  1. Ali, B. N. M., Lin, C. Y., Cleophas, F., Abdullah, M. H., & Musta, B. (2015). Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environmental Monitoring and Assessment. doi: 10.1007/s10661-014-4190-y.Google Scholar
  2. Asa, S. C., Rath, P., Panda, U. C., Parhi, P. K., & Bramha, S. (2013). Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environmental Monitoring and Assessment, 185, 6719–6737.CrossRefGoogle Scholar
  3. Bhuiyan, M. A. H., Dampare, S. B., Islam, M. A., & Suzuki, S. (2015). Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environmental Monitoring and Assessment. doi: 10.1007/s10661-014-4075-0.Google Scholar
  4. BIS (2003). Bureau of Indian Standards Drinking water-specification IS: 10500, New Delhi.Google Scholar
  5. Bo, L., Wang, D., Li, T., Li, Y., Zhang, G., Wang, C., et al. (2014). Accumulation and risk assessment of heavy metals in water, sediments and aquatic organisms in rural rivers in the Taihu Lake region. China: Environ Sci Poll Res. doi: 10.1007/s11356-014-3798-3.Google Scholar
  6. Cenci, R. M., & Martin, J. M. (2004). Concentration and fate of trace metals in Mekong River Delta. Science of the Total Environment, 332, 167–182.CrossRefGoogle Scholar
  7. Cengiz, M. F., Kilic, S., Yalcin, F., Kilic, M., & Yalcin, M. G. (2017). Evaluation of heavy metal risk potential in Bogacayi River water (Antalya, Turkey). Environmental Monitoring and Assessment, 189, 248. doi: 10.1007/s10661-017-5925-3.CrossRefGoogle Scholar
  8. CGWB (2013). Dynamic Ground Water Resources of India. Ministry of Water Resources, Govt. of India, Central Ground Water Board.Google Scholar
  9. Farkas, A., Erratico, C., & Viganò, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68, 761–768.CrossRefGoogle Scholar
  10. Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., et al. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.CrossRefGoogle Scholar
  11. Gonzalez, A. E., Rodriguez, M. T., Sanchez, J. C. J., Espinosa, A. J. F., & De La Rosa, F. J. B. (2000). Assessment of metals in sediments in a tributary of Guadalquivir river (Spain): Heavy metal partitioning and relation between the water and sediment system. Water, Air, and Soil Pollution, 121, 11–29.CrossRefGoogle Scholar
  12. Gupta, S. K., Chabukdhara, M., Kumar, P., Singh, J., & Bux, F. (2014). Evaluation of ecological risk of metal contamination in river Gomti, India: A biomonitoring approach. Ecotoxicology and Environmental Safety, 110, 49–55.CrossRefGoogle Scholar
  13. Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  14. Hejabi, A. T., Basavarajappa, H. T., Karbassi, A. R., & Monavari, S. M. (2011). Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environmental Monitoring and Assessment, 182, 1–13.CrossRefGoogle Scholar
  15. Horton, R. K. (1965). An index system for rating water quality. Journal of the Water Pollution Control Federation, 3, 300.Google Scholar
  16. Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metals pollution in surface water and sediments: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282–291.CrossRefGoogle Scholar
  17. Jain, C. K., Gupta, H., & Chakrapani, G. J. (2008). Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environmental Monitoring and Assessment, 141, 35–47.CrossRefGoogle Scholar
  18. Li, S., & Zhang, Q. (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. Journal of Hazardous Materials, 181, 1051–1058.CrossRefGoogle Scholar
  19. Liu, M., Yang, Y., Yun, X., Zhang, M., Li, Q. X., & Wang, J. (2014). Distribution and ecological assessment of heavy metals in surface sediments of the East Lake, China. Ecotoxicology, 23, 92–101.CrossRefGoogle Scholar
  20. MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.CrossRefGoogle Scholar
  21. Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  22. Mathis, B. J., & Cummings, T. F. (1973). Selected metals in sediments and biota in Illinois river. Journal of Water Pollution Control Federation, 45, 1573–1583.Google Scholar
  23. Montuori, P., Lama, P., Aurino, S., Naviglio, D., & Triassi, M. (2013). Metals loads into the Mediterranean Sea: Estimate of Sarno River inputs and ecological risk. Ecotoxicology, 22, 295–307.CrossRefGoogle Scholar
  24. Muller, G. (1981). Die Schwermetallbelstang der sediment des Neckarars und seiner N ebenflusseeine estandsaufnahme. Chemical Zeitung, 105, 157–164.Google Scholar
  25. Nazneen, S., & Patel, P. (2016). Distribution and Fractionation of Heavy Metals in Surface Sediments of Chilika Lagoon, East Coast of India. Journal of Environmental Science, Toxicology and Food Technology, 10, 63–71.Google Scholar
  26. Paramasivam, K., Ramasamy, V., & Suresh, G. (2015). Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 137, 397–407.CrossRefGoogle Scholar
  27. Parween, M., Ramanathan, A. L., & Raju, N. J. (2017). Waste water management and water quality of river Yamuna in the megacity of Delhi. International Journal of Environmental Science and Technology. doi: 10.1007/s13762-017-1280-8.Google Scholar
  28. Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River Basin, Andhra Pradesh, India. Environmental Earth Sciences, 75, 611.CrossRefGoogle Scholar
  29. Persuad, D., Jaagumagi, R., & Hayton, A. (1993). Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Canada: Ontario Ministry of the Environment.Google Scholar
  30. Prasad, B., & Bose, J. M. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 41, 183–188.CrossRefGoogle Scholar
  31. Raju, N. J. (2006). Iron contamination in groundwater: A case from Tirumala–Tirupati environs, India. The Researcher, 1, 28–31.Google Scholar
  32. Raju, N. J., Patel, P., Reddy, B. S. R., Suresh, U., & Reddy, T. V. K. (2016). Identifying source and evaluation of hydrogeochemical processes in the hard rock aquifer system: Geostatistical analysis and geochemical modeling techniques. Environmental Earth Sciences, 75(16), 1157.CrossRefGoogle Scholar
  33. Raju, N. J., Shukla, U. K., & Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: A fast-urbanizing center in Uttar Pradesh, India. Environmental Monitoring and Assessment, 173, 279–300.CrossRefGoogle Scholar
  34. Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International Journal of Environmental Science and Technology, 7, 785–792.CrossRefGoogle Scholar
  35. Salati, S., & Moore, F. (2010). Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environmental Monitoring and Assessment, 164, 677–689.CrossRefGoogle Scholar
  36. Shafie, N. A., Aris, A. Z., & Haris, H. (2014). Geoaccumulation and distribution of heavy metals in the urban river sediment. International Journal of Sediment Research, 29, 368–377.CrossRefGoogle Scholar
  37. Shapiro, L. (1975). Rapid analysis of silicate, carbonate and phosphate rocks. Revised. USGS Bulletin, 1401, 1–55.Google Scholar
  38. Singh, P. K., Mohan, D., Singh, V. K., & Malik, A. (2005). Studies on distribution and fraction of heavy metals in Gomti river sediments—A tributary of the Ganges, India. Journal of Hydrology, 312, 14–27.CrossRefGoogle Scholar
  39. Singh, M., Müller, G., & Singh, I. B. (2003). Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. Journal of Geochemical Exploration, 80, 1–17.CrossRefGoogle Scholar
  40. Singh, S., Raju, N. J., & Nazneen, S. (2015). Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India. Environmental Monitoring and Assessment, 187(6), 345.CrossRefGoogle Scholar
  41. Subramanian, V. (1987). Environmental geochemistry of Indian river basins, a review. Journal of the Geological Society of India, 29, 205–220.Google Scholar
  42. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of Earth’s crust. Bulletin of Geological Society of America, 72, 175–192.CrossRefGoogle Scholar
  43. USEPA. (1999). US environmental protection agency, screening level ecological risk assessment protocol for hazardous waste combustion facilities (Vol. 3). Appendix E: Toxicity reference values. EPA 530-D99-001C.
  44. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 63, 251–263.CrossRefGoogle Scholar
  45. WHO. (2004). Guidelines for drinking water quality (3rd ed.). Geneva: World Health Organization.Google Scholar
  46. Xiao, R., Bai, J., Huang, L., Zhang, H., Cui, B., & Liu, X. (2013). Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22, 1564–1575.CrossRefGoogle Scholar
  47. Yang, S. Y., Li, C. X., Jung, H. S., & Lee, H. J. (2002). Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identification of sediment source in the Jiangsu coastal plain, China. Marine Geology, 186, 229–241.CrossRefGoogle Scholar
  48. Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., & Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533–1543.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Priyanka Patel
    • 1
  • N. Janardhana Raju
    • 1
    Email author
  • B. C. Sundara Raja Reddy
    • 2
  • U. Suresh
    • 2
  • D. B. Sankar
    • 2
  • T. V. K. Reddy
    • 2
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of GeologyS.V. UniversityTirupatiIndia

Personalised recommendations