Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review

  • Mihiri Seneviratne
  • Nishanta Rajakaruna
  • Muhammad Rizwan
  • H. M. S. P. Madawala
  • Yong Sik OkEmail author
  • Meththika VithanageEmail author
Original Paper


Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.


Antioxidant system Starch mobilization Proline Protein degradation Chlorophyll Heavy metal stress 


  1. Abraham, K., Sridevi, R., Suresh, B., & Damodharam, T. (2013). Effect of heavy metals (Cd, Pb, Cu) on seed germination of Arachis hypogeae L. Asian Journal of Plant Science and Research, 3(1), 10–12.Google Scholar
  2. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22(11), 8148–8162.CrossRefGoogle Scholar
  3. Ahmad, I., Akhtar, M. J., Asghar, H. N., & Zahir, Z. A. (2013). Comparative efficacy of growth media in causing cadmium toxicity to wheat at seed germination stage. International Journal of Agriculture & Biology, 15, 517–522.Google Scholar
  4. Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Jamil, A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pakistan Journal of Botany, 44(5), 1569–1574.Google Scholar
  5. Ahsan, N., Lee, D.-G., Lee, S.-H., Kang, K. Y., Lee, J. J., Kim, P. J., et al. (2007a). Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere, 67(6), 1182–1193.CrossRefGoogle Scholar
  6. Ahsan, N., Lee, S.-H., Lee, D.-G., Lee, H., Lee, S. W., Bahk, J. D., et al. (2007b). Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Comptes Rendus Biologies, 330(10), 735–746.CrossRefGoogle Scholar
  7. Akinci, I. E., & Akinci, S. (2010). Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). African Journal of Biotechnology, 9(29), 4589–4594.Google Scholar
  8. Ali, M. B., Chun, H. S., Kim, B. K., & Lee, C. B. (2002). Cadmium-induced changes in antioxidant enzyme activities in rice (Oryza sativa L. cv. Dongjin). Journal of Plant Biology, 45(3), 134–140.CrossRefGoogle Scholar
  9. Arteca, R. N. (Ed.). (1996). Historical aspects and fundamental terms and concepts. In Plant growth substances (pp. 1–27). Berlin: Springer.Google Scholar
  10. Ashraf, M., & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216.CrossRefGoogle Scholar
  11. Atici, Ö., Ağar, G., & Battal, P. (2005). Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biologia Plantarum, 49(2), 215–222.CrossRefGoogle Scholar
  12. Aydinalp, C., & Marinova, S. (2009). The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulgarian Journal of Agricultural Science, 15(4), 347–350.Google Scholar
  13. Bakırdere, S., Bölücek, C., & Yaman, M. (2016). Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery. Environmental Monitoring and Assessment, 188(3), 1–7.CrossRefGoogle Scholar
  14. Bandara, T., Herath, I., Kumarathilaka, P., Hseu, Z.-Y., Ok, Y. S., & Vithanage, M. (2016). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health. doi: 10.1007/s10653-016-9842-0.Google Scholar
  15. Bandara, T., Herath, I., Kumarathilaka, P., Seneviratne, M., Seneviratne, G., Rajakaruna, N., et al. (2017). Role of woody biochar and fungal–bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments, 17(3), 665–673. doi: 10.1007/s11368-015-1243-y.CrossRefGoogle Scholar
  16. Barceló, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13(1), 1–37.CrossRefGoogle Scholar
  17. Barcelo, J., Poschenrieder, C., Andreu, I., & Gunse, B. (1986). Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effects of Cd on water potential, relative water content, and cell wall elasticity. Journal of Plant Physiology, 125(1–2), 17–25.CrossRefGoogle Scholar
  18. Bashmakov, D. I., Lukatkin, A. S., Revin, V. V., Duchovskis, P., Brazaitytë, A., & Baranauskis, K. (2005). Growth of maize seedlings affected by different concentrations of heavy metals. Ekologija, 3, 22–27.Google Scholar
  19. Basile, A., Sorbo, S., Conte, B., Cardi, M., & Esposito, S. (2013). Ultrastructural changes and heat shock proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales–Bryophyta). Environmental Pollution, 182, 209–216.CrossRefGoogle Scholar
  20. Basta, N. T., Pantone, D., & Tabatabai, M. (1993). Path analysis of heavy metal adsorption by soil. Agronomy Journal, 85(5), 1054–1057.CrossRefGoogle Scholar
  21. Baszyński, T. (2014). Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Societatis Botanicorum Poloniae, 55(2), 291–304.CrossRefGoogle Scholar
  22. Bénard, A., Rose, J., Hazemann, J.-L., Proux, O., Trotignon, L., Borschneck, D., et al. (2014). Modelling the Pb release during Portland cement alteration. arXiv:1402.2962.Google Scholar
  23. Bewley, J. D. (1997). Seed germination and dormancy. The Plant Cell, 9(7), 1055.CrossRefGoogle Scholar
  24. Bolan, N. S., & Duraisamy, V. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Soil Research, 41(3), 533–555.CrossRefGoogle Scholar
  25. Boyd, R. S., & Rajakaruna, N. (2013). Heavy metal tolerance. In D. Gibson (Ed.), Oxford bibliographies in ecology. New York: Oxford University Press.Google Scholar
  26. Branzini, A., & Zubillaga, M. S. (2012). Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Applied and Environmental Soil Science, 2012, 7. doi: 10.1155/2012/721032.CrossRefGoogle Scholar
  27. Castaldi, P., Alberti, G., Merella, R., & Melis, P. (2005). Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management, 25(2), 209–213. doi: 10.1016/j.wasman.2004.12.011.CrossRefGoogle Scholar
  28. Charest, C., & Ton Phan, C. (1990). Cold acclimation of wheat (Triticum aestivum): Properties of enzymes involved in proline metabolism. Physiologia Plantarum, 80(2), 159–168.CrossRefGoogle Scholar
  29. Chen, C. T., Chen, L.-M., Lin, C. C., & Kao, C. H. (2001). Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Science, 160(2), 283–290.CrossRefGoogle Scholar
  30. Choudhary, N., Sairam, R., & Tyagi, A. (2005). Expression of Δ1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian Journal of Biochemistry & Biophysics, 42, 366–370.Google Scholar
  31. Chugh, L., & Sawhney, S. (1996). Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environmental Pollution, 92(1), 1–5.CrossRefGoogle Scholar
  32. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88(11), 1707–1719.CrossRefGoogle Scholar
  33. Cokkizgin, A., & Cokkizgin, H. (2015). Effects of lead (PbCl2) stress on germination of lentil (Lens culinaris Medic.) lines. African Journal of Biotechnology, 9(50), 8608–8612.Google Scholar
  34. Dago, À., González, I., Ariño, C., Díaz-Cruz, J. M., & Esteban, M. (2014). Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta, 118, 201–209.CrossRefGoogle Scholar
  35. Davies, K. J. (2001). Degradation of oxidized proteins by the 20S proteasome. Biochimie, 83(3), 301–310.CrossRefGoogle Scholar
  36. Davis, J. A. (1984). Complexation of trace metals by adsorbed natural organic matter. Geochimica et Cosmochimica Acta, 48(4), 679–691.CrossRefGoogle Scholar
  37. De Lacerda, L. D., & Salomons, W. (2012). Mercury from gold and silver mining: A chemical time bomb?. Berlin: Springer Science & Business Media.Google Scholar
  38. Debeaujon, I., & Koornneef, M. (2000). Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology, 122(2), 415–424.CrossRefGoogle Scholar
  39. Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafleche, M. (2008). Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.CrossRefGoogle Scholar
  40. Devi, R., Munjral, N., Gupta, A. K., & Kaur, N. (2013). Effect of exogenous lead on growth and carbon metabolism of pea (Pisum sativum L) seedlings. Physiology and Molecular Biology of Plants, 19(1), 81–89.CrossRefGoogle Scholar
  41. Diwan, H., Khan, I., Ahmad, A., & Iqbal, M. (2010). Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61(1), 97–107.CrossRefGoogle Scholar
  42. Downs, C. A., Coleman, J. S., & Heckathorn, S. A. (1999). The chloroplast 22-Ku heat-shock protein: A lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. Journal of Plant Physiology, 155(4), 477–487.CrossRefGoogle Scholar
  43. Dua, A., & Sawhney, S. K. (1991). Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environmental and Experimental Botany, 31(2), 133–139.CrossRefGoogle Scholar
  44. Dutta, P., Islam, M., & Mondal, S. (2014). Interactive effect of arsenic stress and seed phytate content on germination and seedling development of different vegetable crops. Journal of Plant Physiology & Pathology, 2(2), 2.CrossRefGoogle Scholar
  45. Fabro, G., Kovács, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant–Microbe Interactions, 17(4), 343–350.CrossRefGoogle Scholar
  46. Falkowska, L., Reindl, A. R., Szumiło, E., Kwaśniak, J., Staniszewska, M., Bełdowska, M., et al. (2013). Mercury and chlorinated pesticides on the highest level of the food web as exemplified by herring from the Southern Baltic and African penguins from the zoo. Water, Air, and Soil Pollution, 224(5), 1–15.CrossRefGoogle Scholar
  47. Fariduddin, Q., Khalil, R. R., Mir, B. A., Yusuf, M., & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 185(9), 7845–7856.CrossRefGoogle Scholar
  48. Fu, J., Zhao, C., Luo, Y., Liu, C., Kyzas, G. Z., Luo, Y., et al. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, 102–109.CrossRefGoogle Scholar
  49. Fujii, H., Verslues, P. E., & Zhu, J.-K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell, 19(2), 485–494.CrossRefGoogle Scholar
  50. Fulton, D. C., Stettler, M., Mettler, T., Vaughan, C. K., Li, J., Francisco, P., et al. (2008). β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. The Plant Cell, 20(4), 1040–1058.CrossRefGoogle Scholar
  51. Gadepalle, V. P., Ouki, S. K., Herwijnen, R. V., & Hutchings, T. (2007). Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil and Sediment Contamination: An International Journal, 16(2), 233–251. doi: 10.1080/15320380601169441.CrossRefGoogle Scholar
  52. Gajewska, E., & Skłodowska, M. (2008). Differential biochemical responses of wheat shoots and roots to nickel stress: Antioxidative reactions and proline accumulation. Plant Growth Regulation, 54(2), 179–188.CrossRefGoogle Scholar
  53. Gall, J. E., & Rajakaruna, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In M. Lang (Ed.), Brassicaceae: Characterization, functional genomics and health benefits (pp. 121–148). New York: Nova.Google Scholar
  54. Gallego, S. M., Benavides, M. P., & Tomaro, M. L. (1996). Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Science, 121(2), 151–159.CrossRefGoogle Scholar
  55. Gianazza, E., Wait, R., Sozzi, A., Regondi, S., Saco, D., Labra, M., et al. (2007). Growth and protein profile changes in Lepidium sativum L. plantlets exposed to cadmium. Environmental and Experimental Botany, 59(2), 179–187.CrossRefGoogle Scholar
  56. Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481–494.CrossRefGoogle Scholar
  57. Groot, S., & Karssen, C. (1987). Gibberellins regulate seed germination in tomato by endosperm weakening: A study with gibberellin-deficient mutants. Planta, 171(4), 525–531.CrossRefGoogle Scholar
  58. Hadi, P., Gao, P., Barford, J. P., & McKay, G. (2013). Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. Journal of Hazardous Materials, 252, 166–170.CrossRefGoogle Scholar
  59. Hall, J. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1–11.CrossRefGoogle Scholar
  60. Han, D., Xiong, S., Tu, S., Liu, J., & Chen, C. (2015). Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L. Environmental and Experimental Botany, 117, 12–19.CrossRefGoogle Scholar
  61. Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22(3), 584–596.CrossRefGoogle Scholar
  62. He, J., Ren, Y., Chen, X., & Chen, H. (2014). Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicology and Environmental Safety, 108, 114–119.CrossRefGoogle Scholar
  63. Heckathorn, S. A., Mueller, J. K., LaGuidice, S., Zhu, B., Barrett, T., Blair, B., et al. (2004). Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. American Journal of Botany, 91(9), 1312–1318.CrossRefGoogle Scholar
  64. Herath, I., Iqbal, M. C. M., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R. A., et al. (2017). Bioenergy-derived waste biochar for reducing mobility, bioavailability, and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and Sediments, 17(3), 731–740. doi: 10.1007/s11368-015-1332-y.CrossRefGoogle Scholar
  65. Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2015). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15(1), 126–138. doi: 10.1007/s11368-014-0967-4.CrossRefGoogle Scholar
  66. Hsu, Y., & Kao, C. (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant, Cell and Environment, 26(6), 867–874.CrossRefGoogle Scholar
  67. Hsu, Y. T., & Kao, C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum, 124(1), 71–80.CrossRefGoogle Scholar
  68. Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20(9), 6150–6159.CrossRefGoogle Scholar
  69. Imran, M. A., Chaudhry, M., Khan, R., Ali, Z., & Mahmood, T. (2013). Toxicity of arsenic (As) on seed germination of sunflower (Helianthus annuus L.). International Journal of Physical Sciences, 8(17), 840–847.CrossRefGoogle Scholar
  70. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., et al. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50–56.CrossRefGoogle Scholar
  71. Iqbal, N., Nazar, R., & Umar, S. (2016). Evaluating the importance of proline in cadmium tolerance and its interaction with phytohormones. In N. Iqbal, R. Nazar & N. A. Khan (Eds.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 129–153). Berlin: Springer.Google Scholar
  72. Iqbal, M. Z., Shafiq, M., & Athar, M. (2014). Phytotoxic effects of mercury on seed germination and seedling growth of Albizia lebbeck (L.) Benth. (Leguminosae). Advances in Environmental Research, 3, 207–216.CrossRefGoogle Scholar
  73. Irfan, M., Ahmad, A., & Hayat, S. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 21(2), 125–131.CrossRefGoogle Scholar
  74. Jackson, S. P., & Durocher, D. (2013). Regulation of DNA damage responses by ubiquitin and SUMO. Molecular Cell, 49(5), 795–807.CrossRefGoogle Scholar
  75. Jiang, M., & Zhang, J. (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53(379), 2401–2410.CrossRefGoogle Scholar
  76. Kalai, T., Khamassi, K., Teixeira da Silva, J. A., Gouia, H., & Bettaieb Ben-Kaab, L. (2014). Cadmium and copper stress affect seedling growth and enzymatic activities in germinating barley seeds. Archives of Agronomy and Soil Science, 60(6), 765–783.CrossRefGoogle Scholar
  77. Kang, J.-L., Zeng, Z.-J., & Liu, Y.-P. (2009). Effects of lead (Pb~(2+)) stress on seed germination and seedling growth of wheat. Guangxi Agricultural Sciences, 2, 009.Google Scholar
  78. Karmous, I., Bellani, L. M., Chaoui, A., El Ferjani, E., & Muccifora, S. (2015). Effects of copper on reserve mobilization in embryo of Phaseolus vulgaris L. Environmental Science and Pollution Research, 22(13), 10159–10165.CrossRefGoogle Scholar
  79. Karmous, I., Chaoui, A., Jaouani, K., Sheehan, D., El Ferjani, E., Scoccianti, V., et al. (2014a). Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiology and Biochemistry, 76, 77–85.CrossRefGoogle Scholar
  80. Karmous, I., Jaouani, K., El Ferjani, E., & Chaoui, A. (2014b). Responses of proteolytic enzymes in embryonic axes of germinating bean seeds under copper stress. Biological Trace Element Research, 160(1), 108–115.CrossRefGoogle Scholar
  81. Karmous, I., Khadija, J., Chaoui, A., & El Ferjani, E. (2012). Proteolytic activities in Phaseolus vulgaris cotyledons under copper stress. Physiology and Molecular Biology of Plants, 18(4), 337–343.CrossRefGoogle Scholar
  82. Kaul, S., Sharma, S., & Mehta, I. (2008). Free radical scavenging potential of l-proline: Evidence from in vitro assays. Amino Acids, 34(2), 315–320.CrossRefGoogle Scholar
  83. Khan, A. (1968). Inhibition of gibberellic acid-induced germination by abscisic acid and reversal by cytokinins. Plant Physiology, 43(9), 1463.CrossRefGoogle Scholar
  84. Khan, A., Kuek, C., Chaudhry, T., Khoo, C., & Hayes, W. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41(1), 197–207.CrossRefGoogle Scholar
  85. Kim, S., Lee, S., & Lee, I. (2012). Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water, Air, and Soil Pollution, 223(5), 2799–2806.CrossRefGoogle Scholar
  86. Komatsu, S., Abbasi, F., Kobori, E., Fujisawa, Y., Kato, H., & Iwasaki, Y. (2005). Proteomic analysis of rice embryo: An approach for investigating Gα protein-regulated proteins. Proteomics, 5(15), 3932–3941.CrossRefGoogle Scholar
  87. Koornneef, M., Reuling, G., & Karssen, C. (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum, 61(3), 377–383.CrossRefGoogle Scholar
  88. Kranner, I., & Colville, L. (2011). Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72(1), 93–105.CrossRefGoogle Scholar
  89. Kriz, A. L. (1989). Characterization of embryo globulins encoded by the maize Glb genes. Biochemical Genetics, 27(3–4), 239–251.CrossRefGoogle Scholar
  90. Kumar, P. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29(5), 1232–1238.CrossRefGoogle Scholar
  91. Kumarathilaka, P., & Vithanage, M. (2017). Influence of Gliricidia sepium biochar on attenuate perchlorate-induced heavy metal release in serpentine soil. Journal of Chemistry, 2017, 8. doi: 10.1155/2017/6180636.CrossRefGoogle Scholar
  92. Küpper, H., Küpper, F., & Spiller, M. (1996). Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany, 47(2), 259–266.CrossRefGoogle Scholar
  93. Kuriakose, S. V., & Prasad, M. (2008). Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regulation, 54(2), 143–156.CrossRefGoogle Scholar
  94. Labra, M., Gianazza, E., Waitt, R., Eberini, I., Sozzi, A., Regondi, S., et al. (2006). Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere, 62(8), 1234–1244.CrossRefGoogle Scholar
  95. Lacerda, L. (1997). Global mercury emissions from gold and silver mining. Water, Air, and Soil Pollution, 97(3–4), 209–221.Google Scholar
  96. Li, C.-X., Feng, S.-L., Yun, S., Jiang, L.-N., Lu, X.-Y., & Hou, X.-L. (2007). Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences, 19(6), 725–732.CrossRefGoogle Scholar
  97. Lin, T.-Y., Wei, C.-C., Huang, C.-W., Chang, C.-H., Hsu, F.-L., & Liao, V. H.-C. (2016). Both phosphorus fertilizers and indigenous bacteria enhance arsenic release into groundwater in the arsenic-contaminated aquifers. Journal of Agricultural and Food Chemistry, 64(11), 2214–2222.Google Scholar
  98. Liu, J., Zhang, Y., Shi, P., & Chai, T. (2012). Effect of cadmium on seed germination and antioxidative enzymes activities in cotyledon of Solanum nigrum L. Journal of Agro-Environment Science, 31(5), 880–884.Google Scholar
  99. Mahdieh, S., Ghaderian, S. M., & Karimi, N. (2013). Effect of arsenic on germination, photosynthesis and growth parameters of two winter wheat varieties in Iran. Journal of Plant Nutrition, 36(4), 651–664.CrossRefGoogle Scholar
  100. Maheshwari, R., & Dubey, R. S. (2008). Inhibition of ribonuclease and protease activities in germinating rice seeds exposed to nickel. Acta Physiologiae Plantarum, 30(6), 863–872.CrossRefGoogle Scholar
  101. Maheshwari, R., & Dubey, R. (2009). Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation, 59(1), 37–49.CrossRefGoogle Scholar
  102. Mahmood, T., Islam, K., & Muhammad, S. (2007). Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pakistan Journal of Botany, 39(2), 451.Google Scholar
  103. Malik, J. A., Goel, S., Kaur, N., Sharma, S., Singh, I., & Nayyar, H. (2012). Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environmental and Experimental Botany, 77, 242–248.CrossRefGoogle Scholar
  104. Mazhoudi, S., Chaoui, A., Ghorbal, M. H., & El Ferjani, E. (1997). Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Science, 127(2), 129–137.CrossRefGoogle Scholar
  105. Mishra, S., & Dubey, R. S. (2005). Heavy metal toxicity induced alterations in photosynthetic metabolism in plants. In M. Pessarakli (Ed.), Handbook of phytosynthesis. Tucson: CRC Press.Google Scholar
  106. Mishra, S., & Dubey, R. S. (2006). Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. Journal of Plant Physiology, 163(9), 927–936.CrossRefGoogle Scholar
  107. Mishra, S., Jha, A., & Dubey, R. (2011). Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma, 248(3), 565–577.CrossRefGoogle Scholar
  108. Mohamed, A. A., Castagna, A., Ranieri, A., & di Toppi, L. S. (2012). Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 57, 15–22.CrossRefGoogle Scholar
  109. Muhammad, Z. I., Maria, K. S., Mohammad, A., Muhammad, S., Zia-Ur-Rehman, F., & Muhammad, K. (2015). Effect of mercury on seed germination and seedling growth of Mungbean (Vigna radiata (L.) Wilczek). Journal of Applied Sciences and Environmental Management, 19(2), 191–199.CrossRefGoogle Scholar
  110. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. doi: 10.1007/s10311-010-0297-8.CrossRefGoogle Scholar
  111. Nambara, E., Akazawa, T., & McCourt, P. (1991). Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis. Plant Physiology, 97(2), 736–738.CrossRefGoogle Scholar
  112. Nasr, N. (2013). Germination and seedling growth of maize (Zea mays L.) seeds in toxicity of aluminum and nickel. Merit Research Journal of Environmental Science and Toxicology, 1(5), 110–113.Google Scholar
  113. Neilson, S., & Rajakaruna, N. (2015). Phytoremediation of agricultural soils: Using plants to clean metal-contaminated arable land. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza & L. Newman (Eds.), Phytoremediation (pp. 159–168). Berlin: Springer.Google Scholar
  114. Nicholson, F., Smith, S., Alloway, B., Carlton-Smith, C., & Chambers, B. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1), 205–219.CrossRefGoogle Scholar
  115. Østergaard, O., Finnie, C., Laugesen, S., Roepstorff, P., & Svensson, B. (2004). Proteome analysis of barley seeds: Identification of major proteins from two-dimensional gels (pI 4–7). Proteomics, 4(8), 2437–2447.CrossRefGoogle Scholar
  116. Ouzounidou, G., Moustakas, M., & Eleftheriou, E. (1997). Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Archives of Environmental Contamination and Toxicology, 32(2), 154–160.CrossRefGoogle Scholar
  117. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574. doi: 10.1016/j.jhazmat.2010.09.082.CrossRefGoogle Scholar
  118. Patnaik, A., & Mohanty, B. (2013). Toxic effect of mercury and cadmium on germination and seedling growth of Cajanus cajan L. (pigeon pea). Annals of Biological Research, 4(3), 123–126.Google Scholar
  119. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539–548.CrossRefGoogle Scholar
  120. Prasad, M., & Strzałka, K. (1999). Impact of heavy metals on photosynthesis. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants (pp. 117–138). Berlin: Springer.Google Scholar
  121. Prodanovic, O., Prodanovic, R., Pristov, J. B., Mitrovic, A., & Radotic, K. (2016). Effect of cadmium stress on antioxidative enzymes during the germination of Serbian spruce [Picea omorika (Pan.) Purkynĕ]. African Journal of Biotechnology, 11(52), 11377–11385.Google Scholar
  122. Prost, R., & Yaron, B. (2001). Use of modified clays for controlling soil environmental quality. Soil Science, 166(12), 880–895.CrossRefGoogle Scholar
  123. Rai, A., Tripathi, P., Dwivedi, S., Dubey, S., Shri, M., Kumar, S., et al. (2011). Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere, 82(7), 986–995.CrossRefGoogle Scholar
  124. Ranki, H., Sopanen, T., & Voutilainen, R. (1990). Localization of carboxypeptidase I in germinating barley grain. Plant Physiology, 93(4), 1449–1452.CrossRefGoogle Scholar
  125. Rao, K. M., & Sresty, T. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157(1), 113–128.CrossRefGoogle Scholar
  126. Rezaei, M., Sedghi, M., & Parmoon, G. (2013). Effect of HgCl2 on the germination of hardened rapeseed. Technical Journal of Engineering and Applied Sciences, 3(13), 1162–1166.Google Scholar
  127. Rubio, M., Escrig, I., Martinez-Cortina, C., Lopez-Benet, F., & Sanz, A. (1994). Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regulation, 14(2), 151–157.CrossRefGoogle Scholar
  128. Salt, D. E., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109(4), 1427–1433.CrossRefGoogle Scholar
  129. Sanal, F., Şeren, G., & Güner, U. (2014). Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L. Bulletin of Environmental Contamination and Toxicology, 92(4), 483–489.CrossRefGoogle Scholar
  130. Sánchez-Virosta, P., Espín, S., García-Fernández, A., & Eeva, T. (2015). A review on exposure and effects of arsenic in passerine birds. Science of the Total Environment, 512, 506–525.CrossRefGoogle Scholar
  131. Sankarganesh, K., Selvaraj, M., Baskaran, L., & Chidambaram, A. A. (2015). Chromium induced changes in Soybean (Glycine max L.) metabolism. World Scientific News, 16, 145–178.Google Scholar
  132. Saradhi, P. P. (1991). Proline accumulation under heavy metal stress. Journal of Plant Physiology, 138(5), 554–558.CrossRefGoogle Scholar
  133. Saradhi, P. P., AliaArora, S., & Prasad, K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and Biophysical Research Communications, 209(1), 1–5.CrossRefGoogle Scholar
  134. Saueia, C. H. R., Le Bourlegat, F. M., Mazzilli, B. P., & Fávaro, D. I. T. (2013). Availability of metals and radionuclides present in phosphogypsum and phosphate fertilizers used in Brazil. Journal of Radioanalytical and Nuclear Chemistry, 297(2), 189–195.CrossRefGoogle Scholar
  135. Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477–482.CrossRefGoogle Scholar
  136. Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.Google Scholar
  137. Shah, K., & Dubey, K. (1995). Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiology and Biochemistry, 33(5), 577–584.Google Scholar
  138. Shah, K., & Dubey, R. (1998). Cadmium elevates level of protein, amino acids and alters activity of proteolytic enzymes in germinating rice seeds. Acta Physiologiae Plantarum, 20(2), 189–196.CrossRefGoogle Scholar
  139. Shah, K., Kumar, R. G., Verma, S., & Dubey, R. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135–1144.CrossRefGoogle Scholar
  140. Shakeel, S. N., Haq, N. U., Heckathorn, S., & Luthe, D. (2012). Analysis of gene sequences indicates that quantity not quality of chloroplast small HSPs improves thermotolerance in C4 and CAM plants. Plant Cell Reports, 31(10), 1943–1957.CrossRefGoogle Scholar
  141. Sharma, R. K., & Agrawal, M. (2005). Biological effects of heavy metals: An overview. Journal of Environmental Biology, 26(2), 301–313.Google Scholar
  142. Shen, G., Zhu, C., & Du, Q. Z. (2010). Genome-wide identification of PHYTOCHELATIN and PHYTOCH_SYNTH domain-containing phytochelatin family from rice. Electronic Journal of Biology, 6(3), 73–79.Google Scholar
  143. Sheoran, I., Singal, H., & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynthesis Research, 23(3), 345–351.CrossRefGoogle Scholar
  144. Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P. K., Mallick, S., Misra, P., et al. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 72(4), 1102–1110.CrossRefGoogle Scholar
  145. Singh, H. P., Kaur, G., Batish, D. R., & Kohli, R. K. (2011). Lead (Pb)-inhibited radicle emergence in Brassica campestris involves alterations in starch-metabolizing enzymes. Biological Trace Element Research, 144(1–3), 1295–1301.CrossRefGoogle Scholar
  146. Singh, D., Nath, K., & Sharma, Y. K. (2007). Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology, 28(2), 409.Google Scholar
  147. Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81(2), 219–231.CrossRefGoogle Scholar
  148. Somashekaraiah, B., Padmaja, K., & Prasad, A. (1992). Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum, 85(1), 85–89.CrossRefGoogle Scholar
  149. Spurgeon, D., & Hopkin, S. (1996). Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia, 40(1), 80–96.Google Scholar
  150. Srivastava, S., Akkarakaran, J. J., Suprasanna, P., & D’Souza, S. F. (2013). Response of adenine and pyridine metabolism during germination and early seedling growth under arsenic stress in Brassica juncea. Acta Physiologiae Plantarum, 35(4), 1081–1091.CrossRefGoogle Scholar
  151. Srivastava, S., & Dubey, R. (2011). Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regulation, 64(1), 1–16.CrossRefGoogle Scholar
  152. Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., & Dubey, R. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251(5), 1047–1065.CrossRefGoogle Scholar
  153. Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15(2), 89–97.CrossRefGoogle Scholar
  154. Taiz, L., & Honigman, W. A. (1976). Production of cell wall hydrolyzing enzymes by barley aleurone layers in response to gibberellic acid. Plant Physiology, 58(3), 380–386.CrossRefGoogle Scholar
  155. Uchimiya, M., Lima, I. M., Thomas Klasson, K., Chang, S., Wartelle, L. H., & Rodgers, J. E. (2010). Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry, 58(9), 5538–5544.CrossRefGoogle Scholar
  156. Usman, A., Kuzyakov, Y., & Stahr, K. (2005). Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp). Journal of Soils and Sediments, 5(4), 245–252.CrossRefGoogle Scholar
  157. Vázquez de Aldana, B., Gundel, P., Garcia Criado, B., García Ciudad, A., García Sánchez, A., & Zabalgogeazcoa, I. (2014). Germination response of endophytic Festuca rubra seeds in the presence of arsenic. Grass & Forage Science, 69(3), 462–469.CrossRefGoogle Scholar
  158. Waalkes, M. P. (2003). Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 533(1), 107–120.CrossRefGoogle Scholar
  159. Wan, M., Wang, M., Zhou, F., & Yang, L. (2013). Effects of arsenic on seed germination of mung bean and black soybean. Journal of Hubei University (Natural Science), 3, 006.Google Scholar
  160. Wang, J., Zhao, F.-J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130(3), 1552–1561.CrossRefGoogle Scholar
  161. Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47(3), 325–338.CrossRefGoogle Scholar
  162. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1), 1–8.CrossRefGoogle Scholar
  163. Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology. doi: 10.5402/2011/402647.
  164. Xiang, L., Etxeberria, E., & den Ende, W. (2013). Vacuolar protein sorting mechanisms in plants. FEBS Journal, 280(4), 979–993.CrossRefGoogle Scholar
  165. Yan, D., Duermeyer, L., Leoveanu, C., & Nambara, E. (2014). The functions of the endosperm during seed germination. Plant and Cell Physiology, 55(9), 1521–1533.Google Scholar
  166. Yan, H., Filardo, F., Hu, X., Zhao, X., & Fu, D. (2015). Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environmental Science and Pollution Research, 23(4), 1–12.Google Scholar
  167. Yang, S.-L., Lan, S.-S., & Gong, M. (2009). Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. Journal of Plant Physiology, 166(15), 1694–1699.CrossRefGoogle Scholar
  168. Yasur, J., & Rani, P. U. (2013). Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research, 20(12), 8636–8648.CrossRefGoogle Scholar
  169. Yin, L., Colman, B. P., McGill, B. M., Wright, J. P., & Bernhardt, E. S. (2012). Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE, 7(10), e47674.CrossRefGoogle Scholar
  170. Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., et al. (1995). Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. The Plant Journal, 7(5), 751–760.CrossRefGoogle Scholar
  171. Zayneb, C., Bassem, K., Zeineb, K., Grubb, C. D., Noureddine, D., Hafedh, M., et al. (2015). Physiological responses of fenugreek seedlings and plants treated with cadmium. Environmental Science and Pollution Research, 22(14), 10679–10689.CrossRefGoogle Scholar
  172. Zeid, I. (2001). Responses of Phaseolus vulgaris chromium and cobalt treatments. Biologia Plantarum, 44(1), 111–115.CrossRefGoogle Scholar
  173. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., et al. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.CrossRefGoogle Scholar
  174. Zhang, Q., & Riechers, D. E. (2004). Proteomic characterization of herbicide safener-induced proteins in the coleoptile of Triticum tauschii seedlings. Proteomics, 4(7), 2058–2071.CrossRefGoogle Scholar
  175. Zhang, S., Zhang, H., Qin, R., Jiang, W., & Liu, D. (2009). Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology, 18(7), 814–823.CrossRefGoogle Scholar
  176. Zhi, Y., Deng, Z., Luo, M., Ding, W., Hu, Y., Deng, J., et al. (2015). Influence of heavy metals on seed germination and early seedling growth in Eruca sativa Mill. American Journal of Plant Sciences, 6(05), 582.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mihiri Seneviratne
    • 1
  • Nishanta Rajakaruna
    • 2
    • 3
  • Muhammad Rizwan
    • 4
  • H. M. S. P. Madawala
    • 5
  • Yong Sik Ok
    • 6
    Email author
  • Meththika Vithanage
    • 7
    • 8
    Email author
  1. 1.Department of Botany, Faculty of Natural SciencesOpen University of Sri LankaNawala, NugegodaSri Lanka
  2. 2.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa
  3. 3.Biological Sciences DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  4. 4.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  5. 5.Department of BotanyUniversity of PeradeniyaPeradeniyaSri Lanka
  6. 6.Korea Biochar Research Center & School of Natural Resources and Environmental ScienceKangwon National UniversityChuncheonKorea
  7. 7.Environmental Chemodynamics ProjectNational Institute of Fundamental StudiesKandySri Lanka
  8. 8.Office of the Dean, Faculty of Applied SciencesUniversity of Sri JayewardenepuraNugegodaSri Lanka

Personalised recommendations