Healing and edible clays: a review of basic concepts, benefits and risks

Abstract

The use of clay by humans for medicinal and wellness purposes is most probably as old as mankind. Within minerals, due to its ubiquitous occurrence in nature and easy availability, clay was the first to be used and is still used worldwide. Healing clays have been traditionally used by man for therapeutic, nutritional and skin care purposes, but they could impart some important health and skin care risks. For instance, clay particles could adsorb and make available for elimination or excretion any potential toxic elements or toxins being ingested or produced, but they could adsorb and make available for incorporation, through ingestion or through dermal absorption, toxic elements, e.g. heavy metals. Edible clays, a particular case of healing clays, have been traditionally used by man for nutritional and therapeutic purposes. Geophagy, the deliberate soil eating, earth eating, clay eating and pica (medical condition or eating disorder shown by individuals addicted to eat earth substances), has been observed in all parts of the world since antiquity, reflecting cultural practice, religious belief and physiological needs, be they nutritional (dietary supplementation) or as a remedy for disease. This paper pretends to review historical data, basic concepts and functions, as well as benefits and risks of the use of healing clays, in general, for therapeutic and cosmetic purposes, and of edible clays, in particular, for therapeutic purposes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Source: Gomes et al. (2013)

Fig. 4

Source: Gomes et al. (2013)

Fig. 5

References

  1. Abrahams, P. W. (2005). Geophagy and the involuntary ingestion of soils. In O. Selinu, B. Alloway, A. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, et al. (Eds.), Essentials of medical geology (pp. 435–458). Amsterdam: Elsevier.

    Google Scholar 

  2. Abrahams, P. W. (2010). ‘‘Earth eaters’’: Ancient and modern perspectives on human geophagy. In E. R. Landa & C. Feller (Eds.), Soil and culture (pp. 369–398). Dordrecht: Springer (Chapter 23).

    Google Scholar 

  3. Abrahams, P. W., Follansbee, M. H., Hunt, A., Smith, B., & Wragg, J. (2006). Iron nutrition and possible lead toxicity: An appraisal of geophagy undertaken by pregnant women of UK Asian communities. Applied Geochemistry, 21, 98–108.

    CAS  Google Scholar 

  4. Abrahams, P. W., & Parsons, J. A. (1996). Geophagy in the tropics: A literature review. Geographical Journal, 162, 63–72.

    Google Scholar 

  5. Al-Rmaldi, S. W., Jenkins, R. O., Watts, M. J., & Haris, P. I. (2010). Risk of human exposure to arsenic and other toxic elements from geophagy: Trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environmental Health, 9, 79. http://www.ehjournal.net/content/9/1/79.

  6. Araújo, A. R. T. S., Paiva, T., Ribeiro, M. P., & Coutinho, P. (2015). Innovation in thermalism: An example in Beira Interior Region of Portugal, chapter 11. In M. Peris-Ortiz & J. Álvarez-Garcia (Eds.), Health and wellness tourism: Emergence of a new market segment (pp. 165–180). Berlin: Springer.

    Google Scholar 

  7. Armijo, F. (1991). Propriedades térmicas de los peloides. Boletin de la Sociedad Española de Hidrologia Médica, 6(3), 151–158.

    Google Scholar 

  8. Armijo, F., Maraver, F., Pozo, M., Carretero, M. I., Armigo, O., Fernandez-Torán, M. A., et al. (2016). Thermal behaviour of clays and clay-water mixtures for pelotherapy. Applied Clay Science, 126, 50–56.

    CAS  Google Scholar 

  9. Arribas, M., Meijide, R., & Mourelle, M. L. (2010). Evolución de la psoriasis tratada con peloides y água mineromedicinal de La Toja. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (p. 75). Madrid: C.E.R.S-A.

    Google Scholar 

  10. Arribas, M., Meijide, R., & Mourelle, M. L. (2012). Long term effects of psoriasis treatment with mineral water and peloids of la Toja. Balnea, Medical Hydrology and Balneology, Environment Aspects, 6, 289–290.

    Google Scholar 

  11. Aufreiter, S., Hancock, R. G., Mahaney, W. C., Stamolic-Robb, A., & Sanmugadas, K. (1997). Geochemistry and mineralogy of soils eaten by humans. International Journal of Food Sciences and Nutrition, 48, 293–305.

    CAS  Google Scholar 

  12. Baschini, M. T., Pettinari, G. R., Vallés, J. M., Aguzzi, C., Cerezo, P., López-Galindo, A., et al. (2010). Suitability of natural sulphur-rich muds from Copahue (Argentina) for use as semisolid health care products. Applied Clay Science, 49, 205–212.

    CAS  Google Scholar 

  13. Bech, J. (1987). Les terres medicinals. Barcelona: Discurs per Reial Académia de Farmácia de Barcelona, Reial Académia de Farmácia de Barcelona-CIRIT (Generalitat de Catalunya).

    Google Scholar 

  14. Bech, J. (1996). Aspectos históricos y técnicos de las arcillas de uso medicinal, IX Simp. Grupo Especializado de Cristalografia La Cristalografia y la Industria Farmacéutica, Reales Soc. Esp. Fisica y Quimica (Ed.), Granada (pp. 15–17).

  15. Beer, A. M., Fetaj, S., & Lange, U. (2013). Peloid therapy: An overview of the empirical status an d evidence of mud therapy. Zeitschrift fur Rheumatologie, 72, 581–589.

    Google Scholar 

  16. Beer, A. M., Junginger, H. E., Lukanov, J., & Sagorchev, P. (2003). Evaluation of the permeation of peat substances through human skin in vitro. International Journal of Pharmaceutics, 253(1–2), 169–175.

    CAS  Google Scholar 

  17. Beer, A. M., Lukanov, J., & Sagorchev, P. (2002). Isolation of biologically active fractions from the water-soluble components of fulvic and ulmic acids from peat. Phytomedicine, 9, 653–666.

    Google Scholar 

  18. Bigard, M. A., & Gilbert, C. (1990). Étude en double aveugle de l’ effet du Beidelix sur la surproduction de gaz intestinaux induite par un repas riche en flatulents. Médicine et Chirugie Digestives, 19, 317–319.

    Google Scholar 

  19. Bisi-Johnson, M. A., Obi, C. L., & Ekosse, G. E. (2010). Microbiological and health related perspectives of geofagia: An overview. African Journal of Biotechnology, 9(19), 5784–5791.

    Google Scholar 

  20. Bisi-Johnson, M. A., Oyelade, H. A., Adediran, K. A., & Akinola, S. A. (2013). Microbial evaluation of geophagic and cosmetic clays from southern and western Nigeria: Potential natural nanomaterials. International Journal of Environmental Chemical, Ecological, Geological and Geophysical Engineering, 7(12), 832–835.

    Google Scholar 

  21. Bolzinger, M. A., Briançon, S., Pelletier, J., & Chevalier, Y. (2012). Penetration of drugs through skin, a complex rate-controlling membrane. Current Opinion in Colloid & Interface Science, 17(3), 156–165.

    CAS  Google Scholar 

  22. Bonglaisin, J. N., Mbofung, C. M. F., & Lantum, D. N. (2011). Intake of lead, cadmium and mercury in kaolin-eating: A quality control. Journal of Medical Sciences, 11(7), 267–273.

    CAS  Google Scholar 

  23. Brand, C. E., de Jager, L., & Ekosse, G. E. (2010). Possible health effects associated with human geophagic practice: An overview. SA Medical Technology, 23(1), 11–13.

    Google Scholar 

  24. British Pharmacopeia. (2008). In Her Majesty's Stationery Office (Ed.), (10,952 pp). London: Health Ministers.

  25. Burguera, E. F., Vela-Anero, A., & Magalhães, J. (2012). Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthritis Cartilage, 22, 1026–1035.

    Google Scholar 

  26. Cara, S., Carcangiu, G., Padalino, G., Palomba, M., & Tamanini, M. (2000). The bentonites in pelotherapy: Thermal properties of clay pastes from Sardinia (Italy). Applied Clay Science, 16, 125–132.

    CAS  Google Scholar 

  27. Carabelli, A., De Bernardi Valserra, G., De Bernardi Valserra, M., Tripodi, S., Belloti, E., Pozzi, R., et al. (1998). Effect of thermal mud baths on normal, dry and seborrheic skin. Clinica Terapeutica, 149(4), 271–275.

    CAS  Google Scholar 

  28. Cardoso-Gomes, J., & Gomes, C. S. F. (2015). Mud used for therapeutic and skin care purposes at the beach of Porto de Mós, Algarve, Portugal. Balnea, 10, 355–356.

    Google Scholar 

  29. Carretero, M. I. (2002). Clay minerals and their beneficial effects upon human health: A review. Applied Clay Science, 21, 155–163.

    CAS  Google Scholar 

  30. Carretero, M. I. (2008). Efecto de la maduración sobre las arcillas empleadas en peloterapia. In J. L. Legido & M. L. Mourelle (Eds.), Investigaciones en el ámbito Iberoamericano sobre Peloides Termales (pp. 95–108). Vigo: Universidad Vigo.

    Google Scholar 

  31. Carretero, M. I., Gomes, C. S. F., & Tateo, F. (2006). Clays and human health. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.), Handbook of clay science. Developments in clay science (Vol. 1, pp. 717–741).

  32. Carretero, M. I., Gomes, C., & Tateo, F. (2013). Clays, drugs and human health. In F. Bergaya & G. Lagaly (Eds.), Handbook of clay science (pp. 711–764). Amsterdam: Elsevier.

    Google Scholar 

  33. Carretero, M. I., & Pozo, M. (2007). Mineralogia Aplicada: Salud y Medio Ambiente (p. 464). Madrid: Thomson.

    Google Scholar 

  34. Carretero, M. I., Pozo, M., Martin-Rubi, J. A., Pozo, E., & Maraver, F. (2010). Mobility of elements in interaction between artificial sweat and peloids used in Spanish spa. Applied Clay Science, 48(3), 506–515.

    CAS  Google Scholar 

  35. Carretero, M. I., Pozo, M., Sánchez, C., Garcia, F. J., Medina, J. A., & Bernabé, J. M. (2007). Comparison of saponite and montmorillonite behaviour during static and stirring maturation with sea water for pelotherapy. Applied Clay Science, 36(1–3), 161–173.

    CAS  Google Scholar 

  36. Casás, L. M., Legido, J. L., Pozo, M., Mourelle, L., Plantier, F., & Bessieres, D. (2011). Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochimica Acta, 524, 68–73.

    Google Scholar 

  37. Curri, S. B., Bombardelli, E., & Grossi, F. (1997). Observations on organic components of thermal mud: Morphohistochemical and biochemical studies on lipid components of mud of the Terme dei Papi (Laghetto del Bagnaccio, Viterbo), Chemical bases of the interpretation of biological and therapeutic actions of thermal mud. Clinica Terapeutica, 148, 637–654.

    CAS  Google Scholar 

  38. Danford, D. E. (1982). Pica and nutrition. Annals Reviews of Nutrition, 2, 303–322.

    CAS  Google Scholar 

  39. Davies, T. C. (2010). Medical geology in Africa. In O. Selinus, R. B. Finkelman, & J. Centeno (Eds.), Medical geology—A regional synthesis (1st ed., pp. 199–219). Amsterdam: Springer (Chapter 8).

    Google Scholar 

  40. Davies, B., Bowman, C., Davies, T., & Selinus, O. (2004). Medical geology: Perspectives and prospects. Essentials of Medical Geology. Amsterdam: Elsevier.

    Google Scholar 

  41. Davies, T. C., Lar, U. A., Solomon, A. O., & Abraham, P. W. (2008). Mineralogy and geochemistry of geophagic materials consumed in Jos-Plateau State of Nigeria. Paper presentation at international conference South Africa.

  42. De Vos, P. (2010). European material medica in historical texts: Longevity of a tradition and implications for future use. Journal of Ethnopharmacology, 176, 10–17.

    Google Scholar 

  43. Delgado, R., Fernández-González, M. V., Gámiz, E., Martín-García, J. M., & Delgado, G. (2010). Evolución de la ultramicofábrica de los peloides en el proceso de maduración. In F. Maraver & M. I. Carretero (Eds.), Libro de resúmenes del II Congreso Iberoamericano de Peloides (pp. 41–42). Madrid: CERSA.

    Google Scholar 

  44. Ekosse, G. E., & Jumbam, D. N. (2010). Geophagic clays: Their mineralogy, chemistry and possible human health effects. African Journal of Biotechnology, 9(40), 6755–6767.

    Google Scholar 

  45. Ekosse, G. E., & Ngole, V. M. (2012). Mineralogy, geochemistry and provenance of geophagic soils from Swaziland. Applied Clay Science, 57, 25–31.

    CAS  Google Scholar 

  46. EMEA—European Medicines Agency. (2008). Guidelines on the specification limits for residual metal catalysts or metal reagents. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003586.pdf. Accessed Mar 2016.

  47. EU. (2011). The drinking water directive (DWD). Council Directive 98/83/EC.

  48. European Commission SCCS/1501/12. (2012). Notes of guidance for testing of cosmetic ingredients and their safety evaluation (8th revision). Scientific Committee on Consumer Safety (SCCS).

  49. European Community Directive 76/768/ECC. (1976). On the approximation of laws of the member states relating to cosmetic products.

  50. European Pharmacopeia (4th ed.). (2002). European pharmacopeia convention, Strasbourg.

  51. European Pharmacopeia (7th ed.). (2011). Directorate for the quality of medicines of the council of Europe, Strasbourg.

  52. Falkenback, A., Kovacs, J., Franke, A., et al. (2005). Radon therapy for the treatment of rheumatic diseases: A review and meta-analysis of controlled clinical trials. Rheumatology International, 25, 205–210.

    Google Scholar 

  53. Favero, J. S., Parisotto-Peterle, J., Weiss-Angeli, V., Brandalise, R. N., Gomes, L. B., Bergmann, C. P., et al. (2016). Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Applied Clay Science. doi:10.1016/j.clay.2016.02.022.

    Article  Google Scholar 

  54. Fernández-González, M. V. (2010). Proceso de maduración de peloides con fase líquida de las principales aguas minerales y mineromedicinales de la provincia de Granada. Ph.D. thesis, Universidad Granada.

  55. Fernández-González, M. V., Martín-García, J. M., Delgado, G., Párraga, J., & Delgado, R. (2013). A study of the chemical, mineralogical and physicochemical properties of peloids prepared with two medicinal mineral waters from Lanjarón Spa (Granada, Spain). Applied Clay Science, 80–81, 107–116.

    Google Scholar 

  56. Fernández-Lao, C., Cantarero, I., Garcia, J. F., & Arroyo, M. (2012). Termoterapia. In M. Albornoz & J. Meroño (Eds.), Procedimientos generales de fisioterapia (pp. 53–65). Barcelona: Elsevier.

    Google Scholar 

  57. Ferrell, R. E. (2008). Medicinal clay and spiritual healing. Clays and Clay Minerals, 56, 751–760.

    CAS  Google Scholar 

  58. Fioravanti, A., Cantarini, L., Guidelli, G. M., & Galeazzi, M. (2011). Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatology International, 31(1), 1–8.

    Google Scholar 

  59. Fioravanti, A., & Chelesschi, S. (2015). Mechanisms of action of balneotherapy in rheumatic diseases. Balnea, 10, 43–56.

    Google Scholar 

  60. Fioravanti, A., Iacoponi, F., Bellisai, B., Cantarini, L., & Galeazzi, M. (2010). Short- and long-term effects of spa therapy in knee osteoarthritis. American Journal of Physical Medicine and Rehabilitation, 89(2), 125–132.

    Google Scholar 

  61. Fioravanti, A., Lamboglia, A., & Pascarelli, N. A. (2013). Thermal water of Vetriolo, Trentino, inhibits the negative effect of interleukin 1β on nitric oxide production and apoptosis in human osteoarthritic chondrocytes. Journal of Biological Regulators and Homeostatic Agents, 27, 891–902.

    CAS  Google Scholar 

  62. Fioravanti, A., Tenti, S., Giannitti, C., Fortunati, N. A., & Galeazzi, M. (2014). Short- and long-term effects of mud-bath treatment on hand osteoarthritis: A randomized clinical trial. International Journal of Biometeorology, 58(1), 79–86.

    Google Scholar 

  63. Francois, G., Micollier, A., & Rouvie, I. (2005). Les Boues Thermales (p. 29). Atelier Santé Environmental: ENSP (École Nationale de la Santé Publique), Rennes.

    Google Scholar 

  64. Galzigna, L., Bettero, A., & Bellometti, S. (1999a). La maturation de la boue thermale et sa mesure. Première partie. La Presse Thermale et Climatique, 136(1), 23–26.

    Google Scholar 

  65. Galzigna, L., Bettero, A., & Bellometti, S. (1999b). La maturation de la boue thermale et sa mesure. Deuxième partie. La Presse Thermale et Climatique, 136(1), 27–30.

    Google Scholar 

  66. Galzigna, L., Ceschi-Berrini, C., Moschin, E., & Tolomio, C. (1998). Thermal mud-pack as anti-inflammatory treatment. Biomedicine & Pharmacotherapy, 52, 408–409.

    CAS  Google Scholar 

  67. Galzigna, L., Lalli, A., Moretto, C., & Bettero, A. (1995). Maturation of thermal mud controlled conditions and identification of an anti-inflammatory fraction. Journal of Physical and Rehabilitation Medicine, 5, 196–199.

    Google Scholar 

  68. Galzigna, L., Moretto, C., & Lalli, A. (1996). Physical and biochemical changes of thermal mud after maturation. Biomedicine & Pharmacotherapy, 50(6–7), 306–308.

    CAS  Google Scholar 

  69. Gámiz, E., Fernández-González, M. V., Párraga, J., & Delgado, R. (2008). Maduración de peloides. Influencia sobre la fase mineral. In J. L. Legido & M. L. Mourelle (Eds.), Investigaciones en el ámbito Iberoamericano sobre Peloides Termales (pp. 191–203). Vigo: Universidad Vigo.

    Google Scholar 

  70. Gámiz, E., Martín-García, J. M., Fernández-González, M. V., Delgado, G., & Delgado, R. (2009). Influence of water type and maduration time on the propieties of kaolinite-saponite peloids. Applied Clay Science, 46(1), 117–123.

    Google Scholar 

  71. Garcia, P.T. (2014). Peloterapia en Cosmética y Medicina Estética. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 185–207). Madrid. ISBN: 978-84-616-8551-6

  72. Gerencsér, G. (2014). Experimental balneology: The biological effects of medicinal water and mud samples from the Carpathian Basin. Ph.D. thesis, University of Pécs, Faculty of Health Sciences, Hungary.

  73. Gomes, C. S. F. (2002). Argilas: Aplicações na Indústria. In O Liberal (Ed.), Câmara de Lobos, Região Autónoma. da Madeira, 338 pp.

  74. Gomes, C. S. F. (2013). Naturotherapies based on minerals. Geomaterials, 3, 1–14.

    Google Scholar 

  75. Gomes, C. S. F. (2015). In pelotherapy what is more important, the peloid solid phase or the peloid liquid phase? Balnea, 10, 125–142.

    Google Scholar 

  76. Gomes, C. S. F., Carretero, M. I., Pozo, M., Maraver, F., Cantista, P., Armijo, F., et al. (2013). Peloids and pelotherapy: Historical evolution, classification and glossary. Applied Clay Science, 75–76, 28–38.

    Google Scholar 

  77. Gomes, C. S. F., Hernandez, R., & Sequeira, M. C. (2009). Characterization of clays used for medicinal purposes in the Archipelago of Cape Verde. Geochimica Brasiliensis, 22(3), 315–331.

    Google Scholar 

  78. Gomes, C. S. F., & Silva, J. B. P. (2007). Minerals and clay minerals in medical geology. Applied Clay Science, 36, 4–21.

    CAS  Google Scholar 

  79. Gomes, C. S. F., & Silva, J. B. P. (2010). A geological approach to the typology and nomenclature of the essentially inorganic peloids. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides, Lanjarón (pp. 12–13). Madrid: C.E.R.S-A.

    Google Scholar 

  80. Gomes, C. S. F., Silva, J. B. P., & Gomes, J. H. C. (2015). Natural peloids versus designed and engineered peloids. Boletín/Sociedad Española de Hidrología Médica, 30(1), 15–36.

    Google Scholar 

  81. Grigsby, R. K., Thyer, B. A., Waller, R. J., & Johnston, G. A., Jr. (1999). Chalk eating in middle Georgia: A culture-bound syndrome of pica? South Medical Journal, 92, 190–192.

    CAS  Google Scholar 

  82. Guggenheim, S., Adams, J. M., Bain, D. C., Bergaya, F., Brigatti, M. F., Drits, V. A., et al. (2006). Summary of recommendations of nomenclature committees relevant to clay mineralogy: Report of the Association Internationale pour l’Étude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.

    CAS  Google Scholar 

  83. Harari, M. (2012a). Climatotherapy of skin diseases at the Dead Sea: An update. Anales de Hidrología Médica, 5(1), 39–51.

    Google Scholar 

  84. Harari, M. (2012b). Beauty is not only skin deep: The Dead Sea features and cosmetics. Anales de Hidrología Médica, 5(1), 75–88.

    Google Scholar 

  85. Health Canada. (2009). Draft guidance on heavy metal impurities and cosmetics. http://www.hc-sc.gc.ca/cps-spc/legislation/consultation/cosmet/metal-metaux-consult-eng.php. Accessed Mar 2016.

  86. Heinrich, M., & Pieroni, A. (2011). Ethnopharmakologie der Albaner Süditaliens. Zeitschrft Fürphytotherapie, 22, 236–240.

    Google Scholar 

  87. Hooda, P. S., Henry, C. J. K., Seyoum, T. A., Armstrong, L. D. M., & Fowler, M. B. (2002). The potential impact of geophagia on the bioavailability of iron, zinc and calcium in human nutrition. Environmental Geochemistry and Health, 24, 305–319.

    CAS  Google Scholar 

  88. Hooda, P. S., Henry, C. J. K., Seyoum, T. A., Armstrong, L. D. M., & Fowler, M. B. (2004). The potential impact of soil ingestion on human mineral nutrition. Science of Total Environment, 333, 75–87.

    CAS  Google Scholar 

  89. Horno, M. A. P. (2014). Historia de la Peloterapia. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 47–53). Madrid. ISBN: 978-84-616-8551-6.

  90. Hunter, J. M. (1973). Geophagy in Africa and United States: A culture-nutrition hypothesis. Geographical Review, 63, 170–195.

    Google Scholar 

  91. Hunter, J. M., & De Kleime, R. (1984). Geophagy in central America. Geographical Review, 74, 157–169.

    CAS  Google Scholar 

  92. ICH—International Conference on Harmonization Q3D. (2013). Guideline for elemental impurities. http://www.ich.org/products/guidelines/quality/quality-single/article/impurities-guideline-for-metal-impurities.html. Accessed 16 Apr 2016.

  93. Igeoma, K. H., Onyoche, O. E., Uju, O. V., & Chukwuene, I. F. (2014). Assessment of heavy metals in edible clays sold in Onitsha metropolis of Anambra State, Nigeria. British Journal of Applied Science & Technology, 4(14), 2114–2124.

    Google Scholar 

  94. Izugbara, C. O. (2003). The cultural context of geophagy among pregnant and lactating Ngwa women of southeastern Nigeria. The African Anthropologist, 10(2), 180–199.

    Google Scholar 

  95. Johns, T., & Duquette, M. (1991). Detoxification and mineral supplementation as functions of geophagy. American Journal of Clinical Nutrition, 53, 448–456.

    CAS  Google Scholar 

  96. Jumbam, N. D. (2013). Geophagic materials: The possible effects of their chemical composition on human health. Transactions of the Royal Society of South Africa, 68, 177–182.

    Google Scholar 

  97. Key, T. C., Jr., Horger, E. O., III, & Miller, J. M. (1982). Geophagia as a cause of maternal death. Obstetrics & Gynaecology, 60, 525–526.

    Google Scholar 

  98. Khlaifat, A., Al-Khashman, O., & Qutob, H. (2010). Physical and chemical characterization of Dead Sea mud. Materials Characterization, 61, 564–568.

    CAS  Google Scholar 

  99. Kikouama, O. J. R., & Baldé, L. (2010). From edible clay to clay-containing formulation for optimization of the oral delivery of some trace elements: A review. International Journal of Food Science and Nutrition, 61(8), 1–21.

    Google Scholar 

  100. Kikouama, O. J. R., Konan, K. L., Katty, A., Bonnet, J. P., Baldé, L., & Yagoubi, N. (2009a). Physicochemical characterization of edible clays and release of trace elements. Applied Clay Science, 43(1), 135–141.

    CAS  Google Scholar 

  101. Kikouama, O. J. R., Le Cornec, F., Bouttier, S., Launay, A., Baldé, L., & Yagoubi, N. (2009b). Evaluation of trace elements released by edible clays in physicochemically simulated physiological media. International Journal of Food Sciences and Nutrition, 60(2), 130–142.

    CAS  Google Scholar 

  102. Kim, J. H., Lee, J., Lee, H. B., Shin, J. H., & Kim, E. K. (2010). Water-retentive and anti-inflammatory properties of organic and inorganic substances from Korean sea mud. Natural Products Communications, 5(3), 395–398.

    CAS  Google Scholar 

  103. Kutalek, R., Wewalka, G., Gundacker, C., Auer, H., Wilson, J., Haliza, D., et al. (2010). Geophagy and potential health implications: Geohelminths, microbes and heavy metals. Transactions of the Royal Society of Tropical Medicine and Hygiene, 104(12), 787–795.

    Google Scholar 

  104. Kwong, A. M., & Henry, J. (2003). Why is geophagy treated like dirt? Deviant behaviour, 24, 353–371. doi:10.1080/713840222.l.

    Article  Google Scholar 

  105. Lambert, V., Boukhari, R., Misslin-Tritsch, C., & Carles, G. (2013). La géophagie: Advances dans la comprehension de ses causes et consequences. La Revue de Médicine Interne, 34, 94–98.

    CAS  Google Scholar 

  106. Lar, U. A., Agene, J. I., & Umar, A. I. (2014). Geophagic clay materials from Nigeria: A potential source of heavy metals and human health implications in mostly women and children who practice it. Environmental Geochemistry and Health. doi:10.1007/s10653-014-9653-0.

    Article  Google Scholar 

  107. Laufer, B. (1930). Geophagy. Field Museum of natural History, Publication 280. Ph.D. thesis Anthropology Series (Vol. 18, pp. 99–198).

  108. Lim, D. G., Jeong, W.-W., Kim, N. A., Lim, J. Y., Lee, S.-H., Shim, W. S., et al. (2014). Effect of the glyceryl monooleate-based lyotropic phases on skin permeation using in vitro diffusion and skin imaging. Asian Journal of Pharmaceutical Science, 9, 324–329.

    Google Scholar 

  109. Lopez-Galindo, A., & Viseras, C. (2004). Pharmaceutical and cosmetic application of clays. In F. Wypych & K. G. Satyanarayana (Eds.), Clay surfaces: Fundamentals and applications (pp. 267–289). Amsterdam: Elsevier.

    Google Scholar 

  110. Lopez-Galindo, A., Viseras, C., & Cerezo, P. (2007). Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 51–63.

    CAS  Google Scholar 

  111. Mahaney, W. C., Milner, M. W., Mulyono, H. S., Hancock, R. G. V., Aufreiter, S., Reich, M., et al. (2000). Mineral and chemical analyses of soils eaten by humans in Indonesia. International Journal of Environmental Health Research, 10, 93–109.

    CAS  Google Scholar 

  112. Maraver, F. (2006). Antecedentes históricos de la Peloterapia. Anales de Hidrlogia Médica, 1, 17–42.

    Google Scholar 

  113. Maraver, F. (2013). Mechanisms of action of pelotherapy: State of the art. In J. Nunes, C. Gomes, & J. Silva (Eds.), Livro de Actas do III Congresso Iberoamericano de Peloides (pp. 9–18). São Miguel, Açores: Ponta Delgada.

    Google Scholar 

  114. Maraver, F., Fernandez-Torán, M. A., Corvillo, I., Morer, C., Váquez, I., Aguillera, L., et al. (2015). Peloterapia: Una Revisión. Medicina Naturista, 9(1), 38–46.

    Google Scholar 

  115. Mascolo, N., Summa, V., & Tateo, F. (1999). Characterization of toxic elements in clays for human healing. Applied Clay Science, 15, 481–500.

    Google Scholar 

  116. Mattioli, M., Giardini, L., Roselli, C., & Desideri, D. (2016). Mineralogical characterization of commercial clays used in cosmetics and possible risk for health. Applied Clay Science, 119, 449–454.

    CAS  Google Scholar 

  117. Meijide, R., Burguera, E. F., & Vela-Anero, A. (2015). Peloterapia y Artrosis. Balnea, 10, 289–300.

    Google Scholar 

  118. Meijide, R., Mourelle, M. L., Vela-Anero, A., López, E. M., Burguera, E. F., & Pérez, C. G. (2014). Aplicación a pacientes: Peloterapia en patologias dermatológicas. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la Investigación y Innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 169–183). Madrid. ISBN: 978-84-616-8551-6.

  119. Meijide, R., Salgado, T., Lianes, A., Legido, J. L., Mourelle, M. L., & Gómez, C. (2010). Evaluación de los câmbios en la piel trás la aplicación de peloides mediante métodos de bioengenharia cutânea. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (pp. 48–49). Madrid: C.E.R.S.-A.

    Google Scholar 

  120. Mpuchane, S. F., Ekosse, G. E., Gashe, B. A., Morobe, I., & Coetzee, S. H. (2010). Microbiological characterization of southern African medicinal and cosmetic clays. International Journal of Environmental Health Research, 20(1), 27–41.

    CAS  Google Scholar 

  121. Mwalongo, D., & Mohamed, N. K. (2013). Determination of essential and toxic elements in clay soil commonly consumed by pregnant women in Tanzania. Radiation Physics and Chemistry, 91, 15–18.

    CAS  Google Scholar 

  122. Naik, A., Pechtold, L., Potts, R., & Guy, R. (1995). Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. Journal of Controlled Release, 37, 299–306.

    CAS  Google Scholar 

  123. Nchito, M., Geissler, P. W., Mubila, L., Friis, H., & Olsen, A. (2004). Effects of iron and multimicronutrient supplementation on geophagy: A two-by-two factorial study among Zambian schoolchildren in Lusaka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 218–227.

    CAS  Google Scholar 

  124. Ngole, V. M., Ekosse, G. E., Jager, L., & Songca, S. P. (2010). Physicochemical characteristics of geophagic clayey soils from South Africa and Swaziland. African Journal of Biotechnology, 9(36), 5929–5930.

    CAS  Google Scholar 

  125. Nissenbaum, A., Rullköetter, J., & Yechieli, Y. (2002). Are the curative properties of ‘black mud’ from the Dead Sea due to the presence of bitumen (asphalt) or other types of organic matter? Environmental Geochemistry and Health, 24(4), 327–335.

    CAS  Google Scholar 

  126. Njiru, H., Elchalal, U., & Paltiel, O. (2011). Geophagy during pregnancy in Africa: A literature review. Obstetrical & Gynecological Survey, 2011(66), 452–459.

    Google Scholar 

  127. Norma Cubana de Peloides. (1998). Oficina Nacional de Normalización (NC) Calle E No. 261 Vedado. Cuba: Ciudad de la Habana.

    Google Scholar 

  128. Novelli, G. (1996). Applicazion medicali e Igieniche delle bentoniti. In F. Veniale (Ed.), Atti Conv. “Argille Curative”, Gruppo Italiano AIPEA, Salice Terme (PV), Tipografia Trabella, Milano.

  129. Novelli, G. (1998). Applicazioni Cosmetiche e Medicaliu delle argille smectiche. Cosmetic News, 122, 350–357.

    Google Scholar 

  130. Novelli, G. (2000). Bentonite: A clay over the centuries. Incontri Scentifici, V Corso di Formazione “Metodi di Analisi di Materiali Argillosi”. Gruppo Itaiano AIPEA (pp. 263–304).

  131. Nyanza, E. C., Joseph, M., Premji, S. S., Thomas, D. S., & Mannion, C. (2014). Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania. BMC Pregnancy Childbirth, 14, 144.

    Google Scholar 

  132. Odabasi, E., Gul, H., Macit, E., Turan, M., & Yildiz, O. (2007). Lipophilic components of different therapeutic mud species. The Journal of Alternative and Complementary Medicine, 13(10), 1115–1118.

    Google Scholar 

  133. Odabasi, E., Turan, M., Erdem, H., & Tekbas, F. (2008). Does mud pack treatment have any chemical effect? A randomized controlled clinical study. Journal of Alternative Complementary Medicine, 14(5), 559–565.

    Google Scholar 

  134. Okunlola, O. A., & Owoyemi, K. A. (2011). Compositional characteristics of geophagy in soils of Nigeria. In 1st Conference on clay and clay minerals: An innovative perspective on the role of clays and clay minerals and geophagia on economic development (pp. 290–305). South Africa: Free State University Bloemfontein.

  135. Otto, C. C., & Haydel, S. E. (2013). Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE, 8(5), 1–9.

    Google Scholar 

  136. Owumi, S. E., & Oyelere, A. K. (2015). Determination of metal ion contents of two antiemetic clays used in geophagy. Toxicology Reports, 2, 928–932.

    CAS  Google Scholar 

  137. Ozumba, U. C., & Ozumba, N. (2002). Patterns of helminth infection in the human gut at the University of Nigeria Teaching Hospital, Enugu, Nigeria. Journal of Health Science, 48, 263–268.

    Google Scholar 

  138. Pandey, A., Mittal, A., Chauhan, N., & Alam, S. (2014). Role of surfactants as penetration enhancer in transdermal drug delivery. Molecular Pharmaceutics & Organic Process Research, 2, 2.

    Google Scholar 

  139. Pastor, J. M. (1998). Termoterapia superficial. In M. Martine, J. M. Pastor, & F. Sendra (Eds.), Manual de Medicina Física (pp. 91–104). Madrid: Harcourt Brace.

    Google Scholar 

  140. Peiró, P. S., & Tejero, S. S. (2014). Utilización terapeutica de la arcilla. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 279–288). Madrid. ISBN: 978-84-616-8551-6.

  141. Photos-Jones, E., Keane, C., Jones, A. X., Stamatakis, M., Robertson, P., Hall, A. J., et al. (2015). Testing dioscorides’ medicinal clays for their antibacterial properties: The case of Samian Earth. Journal of Archaeological Science, 57, 257–267.

    CAS  Google Scholar 

  142. Porlezza, C. (1965). Considerazione sui fanghi terapeutici (peloidi). Thermae II, 2–3, 6–57.

    Google Scholar 

  143. Pozo, M., Carretero, M. I., Pozo, E., Martin Rubi, J. A., & Maraver, F. (2010). Caracterización mineralógica y química de peloides españoles y argentinos; Evaluación de elementos traza potencialmente tóxicos. In F. Maraver & M. I. Carretero (Eds.), Libro de Resúmenes del II Congreso Iberoamericano de Peloides (pp. 37–38). Granada: Balneario de Lanjaron.

    Google Scholar 

  144. Prasad, A. S., Halsted, J. A., & Nadimi, M. (1961). Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. The American Journal of Medicine, 31, 532–546.

    CAS  Google Scholar 

  145. Quintela, A., Terroso, D., Ferreira da Silva, E., & Rocha, F. (2012). Certification and quality criteria of peloids used for therapeutic purposes. Clay Minerals, 47, 441–451.

    CAS  Google Scholar 

  146. Rautureau, M., Liewig, N., Gomes, C. S. F., & Katouzian-Safadi, M. (2010). Argiles et Santé: Propriétés et Thérapies. Paris: Editions Médicales Internationales, Lavoisier. ISBN 978-2-7430-1202-1.

    Google Scholar 

  147. Rebelo, M., Viseras, C., Lopez-Galindo, A., Rocha, F., & Ferreira da Silva, E. (2011). Characterization of Portuguese geological materials to be used in medical hydrology. Applied Clay Science, 51, 258–266.

    CAS  Google Scholar 

  148. Reid, R. (1992). Cultural and medical perspectives on geophagia. Medical Anthropology, 13, 337–351.

    CAS  Google Scholar 

  149. Reinbacher, R. (1999). Brief history of clay in medicine. Clay Minerals Society News, 11, 22–23.

    Google Scholar 

  150. Reinbacher, R. (2003). Healing earths: The third leg of medicine. Bloomington: 1st Books Library.

    Google Scholar 

  151. Robertson, R. H. S. (1986). Fuller’s earth: A history. Kent: Volturna Press.

    Google Scholar 

  152. Robertson, R. H. S. (1996). Cadavers, choleras and clays. Bulletin Mineralogical Society, 113, 3–7.

    Google Scholar 

  153. Roques, C. F. (2004). Mud therapy and health. In Proceedings of the 3rd symposium on thermal muds in Europe, Dax (pp. 75–77).

  154. Roques, C. F. (2015). Mud therapy: Data for clinical evidence. Balnea, 10, 57–62.

    Google Scholar 

  155. Saathoff, E., Olsen, A., Kvalsvig, J. D., & Geissler, P. W. (2002). Geophagy and its association with geohelminth infections in rural school children from Northern KwaZulu Natal, South Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, 485–490.

    Google Scholar 

  156. Sánchez-Espejo, R., Aguzzi, C., Cerezo, P., Salcedo, I., López-Galindo, A., & Viseras, C. (2014). Folk pharmaceutical formulations in western Mediterranean: Identification and safety of clays used in pelotherapy. Journal of Ethnopharmacology, 155, 810–814.

    Google Scholar 

  157. Sarsan, A., Akkaya, N., Ozgen, M., Yildiz, N., Atalay, N. S., & Ardic, F. (2012). Comparing the efficacy of mature mud pack and hot pack treatments for knee osteoarthritis. Journal of Back and Musculoskeletal Rehabilitation, 25(3), 193–199.

    Google Scholar 

  158. Sheppard, S. C. (1998). Geoghagy: Who eats the soils and where do possible contaminants go? Environmental Geology, 33, 109–114.

    Google Scholar 

  159. Skinner, H. C. W. (2007). Earth, source of health and hazards: An introduction to medical geology. Annual Review of Earth and Planetary Sciences, 35, 177–213.

    Google Scholar 

  160. Suárez, M., González, P., Domínguez, R., Bravo, A., Melián, C., Pérez, M., et al. (2011). Identification of organic compounds in San Diego de los Baños Peloid (Pinar del Río, Cuba). Journal of Alternative and Complementary Medicine, 17(2), 155–165.

    Google Scholar 

  161. Tanojo, H., Boelsma, E., Junginger, H., Ponec, M., & Boddé, H. (1999). In vivo human skin permeability enhancement by oleic acid: A laser Doppler velocimetry study. Journal of Controlled Release, 58, 97–104.

    CAS  Google Scholar 

  162. Tateo, F., Ravaglioli, A., Andreoli, C., Bonina, F., Coiro, V., Degetto, S., et al. (2009). The in vitro percutaneous migration of chemical elements from a thermal mud for healing use. Applied Clay Science, 44, 83–94.

    CAS  Google Scholar 

  163. Tateo, F., & Summa, V. (2007). Element mobility in clays for healing use. Applied Clay Science, 36(1), 64–76.

    CAS  Google Scholar 

  164. Tateo, F., Summa, V., Bonelli, G. C., & Bentivenga, G. (2001). Mineralogy and geochemistry of herbalist’s clays for internal use: Simulation of the digestive process. Applied Clay Science, 20, 97–109.

    CAS  Google Scholar 

  165. Tateo, F., Summa, V., Gianossi, M. L., & Ferraro, G. (2006). Healing clays: Mineralogical and geochemical constraints on the preparation of clay-water suspension (“argillic water”). Applied Clay Science, 33, 181–194.

    CAS  Google Scholar 

  166. Tayie, F. (2004). Pica: Motivating factors and health issues. African Journal of Food, Agriculture, Nutrition and Development, 4(1). http://www.bioline.org.br/request?nd04010.

  167. Tefner, I. K. (2014). Effect of balneotherapy on musculoskeletal disorders with chronic pain. Ph.D. thesis, University of Szeged, Hungary.

  168. Teixeira, F., Maraver, F., Crespo, P. V., & Campos, A. (1996). Estudo microanalítico da materia orgánica de águas sulfúreas portuguesas e espanholas. Publicação do Instituto de Climatologia e Hidrologia da Universidade de Coimbra, 34, 1–5.

    Google Scholar 

  169. Tolomio, C., Appolonia, F., Moro, I., & Ceschi-Berrini, C. (2004). Thermophilic microalgae growth on diferente substrates and at different temperatures in experimental tanks in Abano Therme (Italy). Algological Studies, 111, 145–157.

    Google Scholar 

  170. Tolomio, C., Ceschi-Berrini, C., Appolonia, F., Galzigna, L., Masiero, L., Moro, I., et al. (2002). Diatoms in the termal mudo f Abano Therme, Italy (Maturation period). Algological Studies, 105, 11–27.

    Google Scholar 

  171. Tolomio, C., Ceschi-Berrini, C., Moschin, E., & Galzigna, L. (1999). Colonization by diatoms and antirheumatic activity of thermal mud. Cell Biochemistry and Function, 17(1), 29–33.

    CAS  Google Scholar 

  172. Torrella, F. (2006). La sulfuraria de Baños de Montemayor (Cáceres): Características morfológicas y funcionales de la comunidad microbiana constituyente. Anales de Hidrologia Medica, 1, 61–78.

    Google Scholar 

  173. Tricás, J. M., Fortún, M., Jiménez, S., & Estébanes, E. (2014). Fisioterapia: fundamentación fisioterápica de la utilización de peloides. In A. H. Torres (Ed.), Peloterapia: Aplicaciones médicas y cosméticas de fangos termales. Fundación para la investigación e innovación en Hidrologia Médica y Balneoterapia “Bílbilis” (pp. 251–260). Madrid. ISBN: 978-84-616-8551-6.

  174. Trivedi, T. H., Daga, G. L., & Yeolekar, M. E. (2005). Geophagia leading to hypokalemic quadriparesis in a postpartum patient. The Journal of the Association of Physicians of India, 53, 205–207.

    CAS  Google Scholar 

  175. Tserenpil, Sh, Dolman, G., & Voronkov, M. G. (2010). Organic matters in healing muds from Mongolia. Applied Clay Science, 49(1–2), 55–63.

    CAS  Google Scholar 

  176. United States Pharmacopoeia 29-NF 24. (2006). US Pharmacopeial Convention, Rockville, MD.

  177. United States Pharmacopoeia 36NF31. (2013). United States Pharmacopoeia 36 and National Formulary 31. US Pharmacopoeial Convention Rockville, MD.

  178. Veniale, F. (1996). Argille Curative: Antefatti, Fatti e Misfatti. In Atti Convegno “Argille curative”. Salice Terme (PV, Italy) (pp. 26–28) Oct 1–11.

  179. Veniale, F. (1997). Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). In N. Morandi & M. Dondi (Eds.), Argille e Mineralli delle Argille. guida alla definizione di caratteristiche e proprietà per gli usi industriali, Corso di Specializzazione (pp. 205–239). Rimini: Gruppo Italiano AIPEA.

    Google Scholar 

  180. Veniale, F. (1998). Applicazioni e utilizzazioni medico-sanitarie di materiali argillosi (naturali e modificati). Corso di Specializzazione, Gruppo Italiano AIPEA (pp. 1–40).

  181. Veniale, F. (1999). Simposio ‘‘Argille per fanghi peloidi termali e per trattamenti dermatologici e cosmetici”. Montecatini Terme, May 14–15, Pisa, Italy. Gruppo Italiano AIPEA.

  182. Veniale, F., Barberis, E., Carcangiu, G., Morandi, N., Setti, M., Tamanini, M., et al. (2004). Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Applied Clay Science, 25, 135–148.

    CAS  Google Scholar 

  183. Veniale, F., Bettero, A., Jobstraibizer, P. G., & Setti, M. (2007). Thermal muds: Prespectives of innovation. Applied Clay Science, 36, 141–147.

    CAS  Google Scholar 

  184. Vermeer, D. E., & Ferrell, R. E., Jr. (1985). Nigerian geophagical clay: A traditional anti-diarrheal pharmaceutical. Science, 227, 634–636.

    CAS  Google Scholar 

  185. Vermeer, D. E., & Frate, D. A. (1979). Geophagia in rural Mississipi: Environmental and cultural contexts and nutritional implications. American Journal of Clinical Nutrition, 32(10), 2129–2135.

    CAS  Google Scholar 

  186. Viseras, C., Aguzzi, C., Cerezo, P., & Lopez-Galindo, A. (2007). Uses of clay minerals in semisolid health care and therapeutic products. Applied Clay Science, 36, 37–50.

    CAS  Google Scholar 

  187. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., & Aguzzi, C. (2010). Current challenges in clay minerals for drug deliver. Applied Clay Science, 48, 291–295.

    CAS  Google Scholar 

  188. Viseras, C., Cultrone, G., Cerezo, P., Aguzzi, C., Baschini, M., Valle, J., et al. (2006). Characterization of northern Patagonian Bentonites for pharmaceutical use. Applied Clay Science, 31, 272–281.

    Google Scholar 

  189. Viseras, C., & López-Galindo, A. (1999). Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): Some pre-formulation studies. Applied Clay Science, 14, 69–82.

    CAS  Google Scholar 

  190. WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva: WHO.

    Google Scholar 

  191. Wiley, A. S., & Katz, S. H. (1998). Geophagy in pregnancy: A test of a hypothesis. Current Anthropology, 39, 532–545.

    Google Scholar 

  192. Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52, 745–770.

    Google Scholar 

  193. Williams, L. B., Haydel, S. E., & Ferrell, R. (2009). Bentonite, bandaids and borborygmi. Elements, 5, 99–104.

    CAS  Google Scholar 

  194. Williams, L. B., Haydel, S. E., Giese, R., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56, 437–452.

    CAS  Google Scholar 

  195. Williams, L. B., & Hillier, S. (2014). Kaolins and health: From first grade to first aid. Elements, 10, 207–211.

    Google Scholar 

  196. Williams, L. B., Holland, M., Eberl, D. D., & Brunet de Courrsou, L. (2004). Killer Clays! Natural antibacterial clay minerals. Mineralogical Society Bulletin, 139, 3–8.

    Google Scholar 

  197. Williams, L. B., Metge, D., Eberl, D. D., Harvey, R., Turner, A., Prapaipong, P., et al. (2011). What makes a natural clay antibacterial? Environmental Science and Technology, 45, 3768–3773.

    CAS  Google Scholar 

  198. Wilson, M. J. (2003). Clay mineralogical and related characteristics of geophagic materials. Journal of Chemical Ecology, 29, 1525–1547.

    CAS  Google Scholar 

  199. Woywodt, A., & Kiss, A. (2002). Geophagia: The history of earth-eating. Journal of the Royal Society of Medicine, 95, 143–146.

    Google Scholar 

  200. Yamaoka, K., Mitsunobu, F., Hanamoto, K., et al. (2004). Study on biologic effects of radon and thermal therapy on osteoarthritis. The Journal of Pain, 5, 20–25.

    CAS  Google Scholar 

  201. Young, S. L. (2010). Pica in pregnancy: New ideas about an old condition. Annual Review of Nutrition, 30, 403–422.

    CAS  Google Scholar 

  202. Young, S. L. (2011). Craving earth (p. 228). New York: Columbia University Press.

    Google Scholar 

  203. Ziegler, J. L. (1997). Geophagy: A vestige of paleonutrition. Tropical Medicine & International Health, 2, 609–611.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Celso de Sousa Figueiredo Gomes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomes, C.d.F. Healing and edible clays: a review of basic concepts, benefits and risks. Environ Geochem Health 40, 1739–1765 (2018). https://doi.org/10.1007/s10653-016-9903-4

Download citation

Keywords

  • Healing clay
  • Edible clay
  • Mud therapy
  • Peloid therapy
  • Health benefits and risks