Skip to main content

A review of the public health impacts of unconventional natural gas development

Abstract

The public health impact of hydraulic fracturing remains a high profile and controversial issue. While there has been a recent surge of published papers, it remains an under-researched area despite being possibly the most substantive change in energy production since the advent of the fossil fuel economy. We review the evidence of effects in five public health domains with a particular focus on the UK: exposure, health, socio-economic, climate change and seismicity. While the latter would seem not to be of significance for the UK, we conclude that serious gaps in our understanding of the other potential impacts persist together with some concerning signals in the literature and legitimate uncertainties derived from first principles. There is a fundamental requirement for high-quality epidemiological research incorporating real exposure measures, improved understanding of methane leakage throughout the process, and a rigorous analysis of the UK social and economic impacts. In the absence of such intelligence, we consider it prudent to incentivise further research and delay any proposed developments in the UK. Recognising the political realities of the planning and permitting process, we make a series of recommendations to protect public health in the event of hydraulic fracturing being approved in the UK.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abramzon, S., Samaras, C., Curtright, A., Litovitz, A., & Burger, N. (2014). Estimating the consumptive use costs of shale natural gas extraction on pennsylvania roadways. Journal of Infrastructure Systems, 20(3), 06014001-1–06014001-5.

    Article  Google Scholar 

  • Acquah-Andoh, E. (2015). Economic evaluation of bowland shale gas wells development in the UK. World Academy of Science, Engineering and Technology International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(7), 2577–2585.

    Google Scholar 

  • Adams, R., & Kelsey, L. (2012). Pennsylvania dairy farms and marcellus shale, 2007–2010. Penn State Cooperative Extension: Pennsylvania State University.

    Google Scholar 

  • Adgate, J. L., Goldstein, B. D., & McKenzie, L. M. (2014). Potential public health hazards, exposures and health effects from unconventional natural gas development. Environmental Science and Technology, 48(15), 8307–8320.

    CAS  Article  Google Scholar 

  • AEA Technology. (2012). Support to the identification of potential risks for the environment and human health arising from hydrocarbons operations involving hydraulic fracturing in Europe ED57281- Issue Number 17c.

  • Aguilera, R., Aguilera, R. F., & Ripple, R. D. (2014). Link between endowments, economics and environment in conventional and unconventional gas reservoirs. Fuel, 126, 224–238.

    CAS  Article  Google Scholar 

  • Ahmadi, M., & John, K. (2015). Statistical evaluation of the impact of shale gas activities on ozone pollution in North Texas. Science of the Total Environment, 536, 457–467.

    CAS  Article  Google Scholar 

  • Alawattegama, S. K., Kondratyuk, T., Krynock, R., Bricker, M., Rutter, J. K., Bain, D. J., et al. (2015). Well water contamination in a rural community in southwestern Pennsylvania near unconventional shale gas extraction. Journal of Environmental Science and Health Part A, 50(5), 516–528.

    CAS  Article  Google Scholar 

  • Allen, D. T. (2014). Atmospheric emissions and air quality impacts from natural gas production and use. Annual Review of Chemical and Biomolecular Engineering, 5, 55–75.

    CAS  Article  Google Scholar 

  • Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., et al. (2013). Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Science, 110(44), 17768–17773.

    CAS  Article  Google Scholar 

  • Baisch, S. (2013). Seismic hazard associated with shale-gas-fracking? The bowland shale case study. 75th EAGE Conference and Exhibition Incorporating SPE EUROPEC. WS03 Frontiers of Shale Gas Extraction and Microseismic Monitoring.

  • Bamberger, M., & Oswald, R. E. (2012). Impacts of gas drilling on human and animal health. New Solutions, 22(1), 51–77.

    Article  Google Scholar 

  • Bamberger, M., & Oswald, R. E. (2015). Long-term impacts of unconventional drilling operations on human and animal health. Journal of Environmental Science and Health, Part A, 50(5), 447–459.

    CAS  Article  Google Scholar 

  • Barth, J. M. (2013). The economic impact of shale gas development on state and local economies: Benefits, costs, and uncertainties. New Solutions, 23(1), 85–101.

    Article  Google Scholar 

  • Beaver, W. (2014). Environmental concerns in the Marcellus Shale. Business and Society Review, 119(1), 125–146.

    Article  Google Scholar 

  • Bergmann, A., Weber, F.-A., Meiners, H. G., & Müller, F. (2014). Potential water-related environmental risks of hydraulic fracturing employed in exploration and exploitation of unconventional natural gas reservoirs in Germany. Environmental Sciences Europe, 26(1), 1.

    CAS  Article  Google Scholar 

  • Bernstein, P., Kinnaman, T. C., & Wu, M. (2013). Estimating willingness to pay for river amenities and safety measures associated with shale gas extraction. Eastern Economic Journal, 39(1), 28–44.

    Article  Google Scholar 

  • Bloomdahl, R., Abualfaraj, N., Olson, M., & Gurian, P. L. (2014). Assessing worker exposure to inhaled volatile organic compounds from Marcellus Shale flowback pits. Journal of Natural Gas Science and Engineering, 11(21), 348–356.

    Article  CAS  Google Scholar 

  • Brandt, A. R., Heath, G. A., Kort, E. A., O’Sullivan, F., Pétron, G., Jordaan, S. M., et al. (2014). methane leaks from North American Natural Gas Systems. Science, 343(6172), 733–735.

    CAS  Article  Google Scholar 

  • Brown, S. P. A., Krupnick, A., & Walls, M. A. (2009). Natural gas: a bridge to a low-carbon future? RFF Issue Brief 09–11. Washington, DC: Resources for the Future.

    Google Scholar 

  • Bunch, A. G., Perry, C. S., Abraham, L., Wikoff, D. S., Tachovsky, J. A., Hixon, J. G., et al. (2014). Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks. Science of the Total Environment, 468–469, 832–842.

    Article  CAS  Google Scholar 

  • Burnham, A., Han, J., Clark, C. E., Wang, M., Dunn, J. B., & Palou-Rivera, I. (2012). Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environmental Science and Technology, 46(2), 619–627.

    CAS  Article  Google Scholar 

  • Casey, J. A., Ogburn, E. L., Rasmussen, S. G., Irving, J. K., Pollak, J., Locke, P. A., et al. (2015). Predictors of indoor radon concentrations in Pennsylvania, 1989–2013. Environmental Health Perspectives, 123(11), 1130–1137.

    Google Scholar 

  • Casey, J. A., Savitz, D. A., Rasmussen, S. G., Ogburn, E. L., Pollak, J., Mercer, D. G., et al. (2016). Unconventional natural gas development and birth outcomes in Pennsylvania, USA. Epidemiology, 27(2), 163–172.

    Google Scholar 

  • Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., et al. (2014). Toward a better understanding and quantification of methane emissions from shale gas development. Proceedings of the National Academy of Sciences, 111(17), 6237–6242.

    CAS  Article  Google Scholar 

  • Centers for Disease Control and Prevention. CDC/ATSDR Hydraulic Fracturing Statement. https://www.cdc.gov/media/releases/2012/s0503_hydraulic_fracturing.html. Accessed 10 Aug 2016.

  • Chalupka, S. (2012). Occupational silica exposure in hydraulic fracturing. Workplace Health and Safety, 60(10), 460.

    Article  Google Scholar 

  • Colborn, T., Kwiatkowski, C., Schultz, K., & Bachran, M. (2011). Natural gas operations from a public health perspective. Human and Ecological Risk Assessment: An International Journal, 17(5), 1039–1056.

    CAS  Article  Google Scholar 

  • Colborn, T., Schultz, K., Herrick, L., & Kwiatkowski, C. (2014). An exploratory study of air quality near natural gas operations. Human and Ecological Risk Assessment: An International Journal, 20(1), 86–105.

    CAS  Article  Google Scholar 

  • Coram, A., Moss, J., & Blashki, G. (2014). Harms unknown: health uncertainties cast doubt on the role of unconventional gas in Australia’s energy future. The Medical Journal of Australia, 200(4), 210–213.

    Article  Google Scholar 

  • Dale, A. T., Khanna, V., Vidic, R. D., & Bilec, M. M. (2013). Process based life-cycle assessment of natural gas from the Marcellus Shale. Environmental Science and Technology, 47(10), 5459–5466.

    CAS  Article  Google Scholar 

  • Darrah, T. H., Vengosh, A., Jackson, R. B., Warner, N. R., & Poreda, R. J. (2014). Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales. Proceedings of the National Academy of Sciences, 111(39), 14076–14081.

    CAS  Article  Google Scholar 

  • Davies, R. J. (2011). Methane contamination of drinking water caused by hydraulic fracturing remains unproven. Proceedings of the National Academy of Sciences, 108(43), E871.

    CAS  Article  Google Scholar 

  • Davies, R. J., Almond, S., Ward, R. S., Jackson, R. B., Adams, C., Worrall, F., et al. (2014). Oil and gas wells and their integrity: Implications for shale and unconventional resource exploitation. Marine and Petroleum Geology, 9(56), 239–254.

    Article  Google Scholar 

  • Davies, R., Foulger, G., Bindley, A., & Styles, P. (2013). Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Marine and Petroleum Geology, 8(45), 171–185.

    Article  Google Scholar 

  • Drollette, B. D., Hoelzer, K., Warner, N. R., Darrah, T. H., Karatum, O., O’Connor, M. P., et al. (2015). Elevated levels of diesel range organic compounds in groundwater near Marcellus gas operations are derived from surface activities. Proceedings of the National Academy of Sciences, 112(43), 13184–13189.

    CAS  Article  Google Scholar 

  • Eapi, G. R., Sabnis, M. S., & Sattler, M. L. (2014). Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale. Journal of the Air and Waste Management Association, 64(8), 927–944.

    CAS  Article  Google Scholar 

  • Eaton, T. T. (2013). Science-based decision-making on complex issues: Marcellus shale gas hydrofracking and New York City water supply. Science of the Total Environment, 461–462, 158–169.

    Article  CAS  Google Scholar 

  • Elliott, E., Ettinger, A., Leaderer, B., Bracken, M., & Deziel, N. (2016). A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity. Journal of Exposure Science & Environmental Epidemiology,. doi:10.1038/jes.2015.81.

    Google Scholar 

  • Engelder, T., Cathles, L. M., & Bryndzia, L. T. (2014). The fate of residual treatment water in gas shale. Journal of Unconventional Oil and Gas Resources, 9(7), 33–48.

    Article  Google Scholar 

  • Esswein, E. J., Breitenstein, M., Snawder, J., Kiefer, M., & Sieber, W. K. (2013). Occupational exposures to respirable crystalline silica during hydraulic fracturing. Journal of Occupational and Environmental Hygiene, 10(7), 347–356.

    CAS  Article  Google Scholar 

  • Esswein, E. J., Snawder, J., King, B., Breitenstein, M., Alexander-Scott, M., & Kiefer, M. (2014). Evaluation of some potential chemical exposure risks during flowback operations in unconventional oil and gas extraction: preliminary results. Journal of Occupational and Environmental Hygiene, 11(10), D174–D184.

    CAS  Article  Google Scholar 

  • Ethridge, S., Bredfeldt, T., Sheedy, K., Shirley, S., Lopez, G., & Honeycutt, M. (2015). The Barnett Shale: From problem formulation to risk management. Journal of Unconventional Oil and Gas Resources, 9(11), 95–110.

    Article  Google Scholar 

  • Ferrar, K. J., Kriesky, J., Christen, C. L., Marshall, L. P., Malone, S. L., Sharma, R. K., et al. (2013a). Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region. International Journal of Occupational and Environmental Health, 19(2), 104–112.

    Article  Google Scholar 

  • Ferrar, K. J., Michanowicz, D. R., Christen, C. L., Mulcahy, N., Malone, S. L., & Sharma, R. K. (2013b). Assessment of effluent contaminants from three facilities discharging Marcellus Shale wastewater to surface waters in Pennsylvania”. Environmental Science and Technology, 47(7), 3472–3481.

    CAS  Article  Google Scholar 

  • Field, R. A., Soltis, J., McCarthy, M. C., Murphy, S., & Montague, D. C. (2015). Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter. Atmospheric Chemistry and Physics, 15(6), 3527–3542.

    CAS  Article  Google Scholar 

  • Finkel, M. L., & Hays, J. (2013). The implications of unconventional drilling for natural gas: A global public health concern. Public Health, 127(10), 889–893.

    CAS  Article  Google Scholar 

  • Finkel, M., Hays, J., & Law, A. (2015). Unconventional natural gas development and human health: Thoughts from the United States. The Medical Journal of Australia, 203(7), 294–296.

    Article  Google Scholar 

  • Finkel, M. L., Selegean, J., Hays, J., & Kondamudi, N. (2013). Marcellus Shale Drilling’s Impact on the Dairy Industry in Pennsylvania: A descriptive report. New Solutions: A Journal of Environmental and Occupational Health Policy, 23(1), 189–201.

    Article  Google Scholar 

  • Flewelling, S. A., & Sharma, M. (2014). Constraints on upward migration of hydraulic fracturing fluid and brine. Groundwater, 52(1), 9–19.

    CAS  Article  Google Scholar 

  • Flewelling, S. A., Tymchak, M. P., & Warpinski, N. (2013). Hydraulic fracture height limits and fault interactions in tight oil and gas formations. Geophysical Research Letters, 40(14), 3602–3606.

    Article  Google Scholar 

  • Fontenot, B. E., Hunt, L. R., Hildenbrand, Z. L., Carlton, D. D., Jr., Oka, H., Walton, J. L., et al. (2013). An evaluation of water quality in private drinking water wells near natural gas extraction sites in the barnett shale formation. Environmental Science and Technology, 47(17), 10032–10040.

    CAS  Article  Google Scholar 

  • Fryzek, J., Pastula, S., Jiang, X., & Garabrant, D. H. (2013). Childhood cancer incidence in Pennsylvania counties in relation to living in counties with hydraulic fracturing sites. Journal of Occupational and Environmental Medicine, 55(7), 796–801.

    CAS  Article  Google Scholar 

  • Gilman, J. B., Lerner, B. M., Kuster, W. C., & de Gouw, J. A. (2013). Source signature of volatile organic compounds from oil and natural gas operations in Northeastern Colorado. Environmental Science and Technology, 47(3), 1297–1305.

    CAS  Article  Google Scholar 

  • Goetz, J. D., Floerchinger, C., Fortner, E. C., Wormhoudt, J., Massoli, P., Knighton, W. B., et al. (2015). Atmospheric emission characterization of marcellus shale natural gas development sites. Environmental Science and Technology, 49(11), 7012–7020.

    CAS  Article  Google Scholar 

  • Goldstein, B., & Malone, S. (2013). Obfuscation does not provide comfort: response to the article by Fryzek et al. on hydraulic fracturing and childhood cancer. Journal of Occupational and Environmental Medicine, 55(11), 1376–1378.

    CAS  Article  Google Scholar 

  • Gross, S. A., Avens, H. J., Banducci, A. M., Sahmel, J., Panko, J. M., & Tvermoes, B. E. (2013). Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. Journal of the Air and Waste Management Association, 63(4), 424–432.

    CAS  Article  Google Scholar 

  • Haefele, M., & Morton, P. (2009). The influence of the pace and scale of energy development on communities: Lessons from the natural gas drilling boom in the rocky mountains. Western Economics Forum, 8(2), 1–42.

    Google Scholar 

  • Hays, J., & Shonkoff, S. B. C. (2016). Toward an understanding of the environmental and public health impacts of unconventional natural gas development: a categorical assessment of the peer-reviewed scientific literature, 2009–2015. PLoS ONE, 11(4), e0154164.

    Article  Google Scholar 

  • Heath, G. A., O’Donoughue, P., Arent, D. J., & Bazilian, M. (2014). Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proceedings of the National Academy of Sciences, 111(31), E3167–E3176.

    CAS  Article  Google Scholar 

  • Heilweil, V. M., Grieve, P. L., Hynek, S. A., Brantley, S. L., Solomon, D. K., & Risser, D. W. (2015). Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development. Environmental Science and Technology, 49(7), 4057–4065.

    CAS  Article  Google Scholar 

  • Hildenbrand, Z. L., Carlton, D. D., Fontenot, B. E., Meik, J. M., Walton, J. L., Taylor, J. T., et al. (2015). A comprehensive analysis of groundwater quality in the Barnett Shale region. Environmental Science and Technology, 49(13), 8254–8262.

    CAS  Article  Google Scholar 

  • Hladik, M. L., Focazio, M. J., & Engle, M. (2014). Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Science of the Total Environment, 466–467, 1085–1093.

    Article  CAS  Google Scholar 

  • Holland, A. A. (2013). Earthquakes triggered by hydraulic fracturing in south-central Oklahoma. Bulletin of the Seismology Society of America, 103, 1784.

    Article  Google Scholar 

  • Howarth, R. W. (2014). A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Science and Engineering, 2(2), 47–60.

    CAS  Article  Google Scholar 

  • Howarth, R. W., Ingraffea, A., & Engelder, T. (2011). Natural gas: Should fracking stop? Nature, 477(7364), 271–275.

    CAS  Article  Google Scholar 

  • Hughes, J. D. (2013). Energy: A reality check on the shale revolution. Nature, 494(7437), 307–308.

    CAS  Article  Google Scholar 

  • Hultman, N., Rebois, D., Scholten, M., & Ramig, C. (2011). The greenhouse impact of unconventional gas for electricity generation. Environmental Research Letters, 6(4), 044008.

    Article  CAS  Google Scholar 

  • Ingraffea, A. R., Wells, M. T., Santoro, R. L., & Shonkoff, S. B. C. (2014). Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proceedings of the National Academy of Sciences, 111(30), 10955–10960.

    CAS  Article  Google Scholar 

  • Jackson, R. E., Gorody, A. W., Mayer, B., Roy, J. W., Ryan, M. C., & Van Stempvoort, D. R. (2013a). Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Groundwater, 51(4), 488–510.

    CAS  Article  Google Scholar 

  • Jackson, R. B., Vengosh, A., Carey, J. W., Davies, R. J., Darrah, T. H., O’Sullivan, F., et al. (2014). The environmental costs and benefits of fracking. Annual Review of Environment and Resources, 39, 327–362.

    Article  Google Scholar 

  • Jackson, R. B., Vengosh, A., Darrah, T. H., Warner, N. R., Down, A., Poreda, R. J., et al. (2013b). Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proceedings of the National Academy of Sciences, 110(28), 11250–11255.

    CAS  Article  Google Scholar 

  • Jacoby, H. D., & O’Sullivan, F. M. (2012). The influence of shale gas on US Energy and Environmental Policy. Economics of Energy and Environmental Policy, 1(1), 37.

    Article  Google Scholar 

  • Jemielita, T., Gerton, G. L., Neidell, M., Chillrud, S., Yan, B., Stute, M., et al. (2015). Unconventional gas and oil drilling is associated with increased hospital utilization rates. PLoS ONE, 10(7), e0131093.

    Article  CAS  Google Scholar 

  • Jenner, S., & Lamadrid, A. J. (2013). Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States. Energy Policy, 53, 442.

    Article  Google Scholar 

  • Jiang, M., Michael Griffin, W. M., Hendrickson, C., Jaramillo, P., VanBriesen, J., & Venkatesh, A. (2011). Life cycle greenhouse gas emissions of Marcellus shale gas. Environmental Research Letters, 6(3), 034014.

    Article  CAS  Google Scholar 

  • Jones, P., Comfort, D., & Hillier, D. (2014a). Fracking for shale gas in the UK: Property and investment issues. Journal of Property Investment and Finance, 32(5), 505–517.

    Article  Google Scholar 

  • Jones, P., Hillier, D., & Comfort, D. (2014b). Fracking in the UK: Planning and property issues. Property Management, 32(4), 352–361.

    Article  Google Scholar 

  • Kassotis, C. D., Tillitt, D. E., Davis, J. W., Hormann, A. M., & Nagel, S. C. (2014). Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region. Endocrinology, 155(3), 897–907.

    Article  CAS  Google Scholar 

  • Kemball-Cook, S., Bar-Ilan, A., Grant, J., Parker, L., Jung, J., Santamaria, W., et al. (2010). Ozone impacts of natural gas development in the Haynesville Shale. Environmental Science and Technology, 44(24), 9357–9363.

    CAS  Article  Google Scholar 

  • Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research, 118(7), 3518.

    Google Scholar 

  • Kinnaman, T. C. (2011). The economic impact of shale gas extraction: A review of existing studies. Ecological Economics, 70(7), 1243–1249.

    Article  Google Scholar 

  • Kohl, C. A. K., Capo, R. C., Stewart, B. W., Wall, A. J., Schroeder, K. T., Hammack, R. W., et al. (2014). Strontium isotopes test long-term zonal isolation of injected and marcellus formation water after hydraulic fracturing. Environmental Science and Technology, 48(16), 9867–9873.

    Article  CAS  Google Scholar 

  • Lampe, D. J., & Stolz, J. F. (2015). Current perspectives on unconventional shale gas extraction in the Appalachian Basin. Journal of Environmental Science and Health, Part A, 50(5), 434–446.

    CAS  Article  Google Scholar 

  • Lan, X., Talbot, R., Laine, P., & Torres, A. (2015). Characterizing fugitive methane emissions in the barnett shale area using a mobile laboratory. Environmental Science and Technology, 49(13), 8139–8146.

    CAS  Article  Google Scholar 

  • Laurenzi, I. J., & Jersey, G. R. (2013). Life cycle greenhouse gas emissions and freshwater consumption of marcellus shale gas. Environmental Science and Technology, 47(9), 4896–4903.

    CAS  Article  Google Scholar 

  • Lave, R., & Lutz, B. (2014). Hydraulic fracturing: A critical physical geography review. Geography Compass, 8(10), 739–754.

    Article  Google Scholar 

  • Lavoie, T. N., Shepson, P. B., Cambaliza, M. O. L., Stirm, B. H., Karion, A., Sweeney, C., et al. (2015). Aircraft-based measurements of point source methane emissions in the Barnett Shale basin. Environmental Science and Technology, 49(13), 7904–7913.

    CAS  Article  Google Scholar 

  • Levi, M. (2013). Climate consequences of natural gas as a bridge fuel. Climate Change, 118(3), 609–623.

    CAS  Article  Google Scholar 

  • Li, H., & Carlson, K. H. (2014). Distribution and origin of groundwater methane in the wattenberg oil and gas field of Northern Colorado. Environmental Science and Technology, 48(3), 1484–1491.

    CAS  Article  Google Scholar 

  • Lightowlers, P. (2015). Chemical pollution from fracking. London: CHEM Trust.

    Google Scholar 

  • Litovitz, A., Curtright, A., Abramzon, S., Burger, N., & Samaras, C. (2013). Estimation of regional air-quality damages from Marcellus Shale natural gas extraction in Pennsylvania. Environmental Research Letters, 8(1), 014017.

    Article  CAS  Google Scholar 

  • Llewellyn, G. T., Dorman, F., Westland, J. L., Yoxtheimer, D., Grieve, P., Sowers, T., et al. (2015). Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proceedings of the National Academy of Sciences, 112(20), 6325–6330.

    CAS  Article  Google Scholar 

  • Macey, G., Breech, R., Chernaik, M., Cox, C., Larson, D., Thomas, D., et al. (2014). Air concentrations of volatile compounds near oil and gas production: A community-based exploratory study. Environmental Health, 13(1), 82.

    Article  CAS  Google Scholar 

  • Marshall, M. (2011). How fracking caused earthquakes in the UK. New Scientist 2nd November.

  • Maryland Institute for Applied Environmental Health School of Public Health. (2014). Potential public health impacts of natural gas development and production in the marcellus shale in Western Maryland. College Park: University of Maryland.

    Google Scholar 

  • Mash, R., Minnaar, J., & Mash, B. (2014). Health and fracking: Should the medical profession be concerned? South African Medical Journal, 104, 332–335.

    Article  Google Scholar 

  • McCoy, D., & Saunders, P. (2015). Health and fracking: The impacts and opportunity costs. London: Medact.

    Google Scholar 

  • McJeon, H., Edmonds, J., Bauer, N., Clarke, L., Fisher, B., Flannery, B. P., et al. (2014). Limited impact on decadal-scale climate change from increased use of natural gas. Nature, 514(7523), 482–485.

    CAS  Article  Google Scholar 

  • McKenzie, L. M., Guo, R., Witter, R. Z., Savitz, D. A., Newman, L. S., & Adgate, J. L. (2014). Birth outcomes and maternal residential proximity to natural gas development in rural Colorado. Environmental Health Perspectives, 122(4), 412–417.

    Google Scholar 

  • McKenzie, L. M., Witter, R. Z., Newman, L. S., & Adgate, J. L. (2012). Human health risk assessment of air emissions from development of unconventional natural gas resources. Science of the Total Environment, 1(424), 79–87.

    Article  CAS  Google Scholar 

  • McLeod, J. D., Brinkman, G. L., & Milford, J. B. (2014). Emissions Implications of future natural gas production and use in the U.S. and in the Rocky Mountain Region. Environmental Science and Technology, 48(22), 13036–13044.

    CAS  Article  Google Scholar 

  • Middleton, J., & Saunders, P. (2015). 20 years of local ecological public health: the experience of Sandwell in the English West Midlands. Public Health, 129, 1344–1352.

    CAS  Article  Google Scholar 

  • Mitka, M. (2012). Rigorous evidence slim for determining health risks from natural gas fracking. Journal of the American Medical Association, 307(20), 2135–2136.

    CAS  Google Scholar 

  • Molofsky, L. J., Connor, J. A., Wylie, A. S., Wagner, T., & Farhat, S. K. (2013). Evaluation of methane sources in groundwater in northeastern Pennsylvania. Ground Water, 2013(3), 333–349.

    Article  CAS  Google Scholar 

  • Moore, C. W., Zielinska, B., Pétron, G., & Jackson, R. B. (2014). Air impacts of increased natural gas acquisition, processing, and use: A critical review. Environmental Science and Technology, 48(15), 8349–8359.

    CAS  Article  Google Scholar 

  • Muehlenbachs, L., Spiller, E., & Timmins, C. (2015). The housing market impacts of shale gas development. American Economic Review, 105(12), 3633–3659.

    Article  Google Scholar 

  • Munasib, A., & Rickman, D. S. (2015). Regional economic impacts of the shale gas and tight oil boom: A synthetic control analysis. Regional Science and Urban Economics, 1(50), 1–17.

    Article  Google Scholar 

  • Myers, T. (2012). Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater, 50(6), 872–882.

    CAS  Article  Google Scholar 

  • Nelson, A. W., Knight, A. W., Eitrheim, E. S., & Schultz, M. K. (2015). Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study. Journal of Environmental Radioactivity, 4(142), 24–28.

    Article  CAS  Google Scholar 

  • New York State Department of Environmental Conservation. (2011). Chapter 5: Natural gas development activities and high-volume hydraulic fracturing. Supplemental Generic Environmental Impact Statement 2011.

  • New York State Department of Health. (2014). A Public health review of high volume hydraulic fracturing for shale gas development.

  • Newell, R. G., & Raimi, D. (2014). Implications of shale gas development for climate change. Environmental Science and Technology, 48(15), 8360–8368.

    CAS  Article  Google Scholar 

  • O’Sullivan, F., & Paltsev, S. (2012). Shale gas production: Potential versus actual greenhouse gas emissions. Environmental Research Letters, 7(4), 044030.

    Article  CAS  Google Scholar 

  • Olmstead, S. M., Muehlenbachs, L. A., Shih, J., Chu, Z., & Krupnick, A. J. (2013). Shale gas development impacts on surface water quality in Pennsylvania. Proceedings of the National Academy of Sciences, 110(13), 4962–4967.

    CAS  Article  Google Scholar 

  • Omara, M., Sullivan, M. R., Li, X., Subramanian, R., Robinson, A. L., & Presto, A. A. (2016). Methane emissions from conventional and unconventional natural gas production sites in the Marcellus Shale Basin. Environmental Science and Technology, 250(4), 2099–2107.

    Article  CAS  Google Scholar 

  • Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Sciences, 108(20), 8172–8176.

    CAS  Article  Google Scholar 

  • Paredes, D., Komarek, T., & Loveridge, S. (2015). Income and employment effects of shale gas extraction windfalls: Evidence from the Marcellus region. Energy Economics, 47, 112–120.

    Article  Google Scholar 

  • Parenteau, P., & Barnes, A. (2013). A bridge too far: Building off-ramps on the shale gas superhighway. Idaho Law Review, 49, 325–366.

    Google Scholar 

  • Paulik, L. B., Donald, C. E., Smith, B. W., Tidwell, L. G., Hobbie, K. A., Kincl, L., et al. (2015). Impact of natural gas extraction on PAH levels in ambient air. Environmental Science and Technology, 49(8), 5203–5210.

    CAS  Article  Google Scholar 

  • Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., et al. (2015). Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research: Atmospheres, 120(5), 2119–2213.

    CAS  Google Scholar 

  • Pelak, A. J., & Sharma, S. (2014). Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development. Environmental Pollution, 195, 91–100.

    CAS  Article  Google Scholar 

  • Penning, T. M., Breysse, P. N., Gray, K., Howarth, M., & Yan, B. (2014). Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environmental Health Perspectives, 122, 1155–1159.

    Google Scholar 

  • Perdue, R. T., & Pavela, G. (2012). Addictive economies and coal dependency: Methods of extraction and socioeconomic outcomes in West Virginia, 1997–2009. Organization and Environment, 25(4), 368–384.

    Article  Google Scholar 

  • Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., et al. (2014). A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. Journal of Geophysical Research: Atmospheres, 119(11), 6836–6852.

    Google Scholar 

  • Popkin, J. H., Duke, J. M., Borchers, A. M., & Ilvento, T. (2013). Social costs from proximity to hydraulic fracturing in New York state. Energy Policy, 62, 62–69.

    Article  Google Scholar 

  • Public Health England. (2014). Review of the potential public health impacts of exposures to chemical and radioactive pollutants as a result of the shale gas extraction process CRCE 009. Chilton: PHE.

    Google Scholar 

  • Rabinowitz, P. M., Slizovskiy, I. B., Lamers, V., Trufan, S. J., Holford, T. R., Dziura, J. D., et al. (2015). Proximity to natural gas wells and reported health status: Results of a household survey in Washington County, Pennsylvania. Environmental Health Perspectives, 123(1), 21–26.

    Article  CAS  Google Scholar 

  • Rahm, B. G., & Riha, S. J. (2014). Evolving shale gas management: Water resource risks, impacts, and lessons learned. Environmental Science Processes and Impacts, 16(6), 1400–1412.

    CAS  Article  Google Scholar 

  • Rahm, B. G., Vedachalam, S., Bertoia, L. R., Mehta, D., Vanka, V. S., & Riha, S. J. (2015). Shale gas operator violations in the Marcellus and what they tell us about water resource risks. Energy Policy, 7(82), 1–11.

    Article  Google Scholar 

  • Reilly, D., Singer, D., Jefferson, A., & Eckstein, Y. (2015). Identification of local groundwater pollution in northeastern Pennsylvania: Marcellus flowback or not? Environmental Earth Sciences, 73(12), 8097–8109.

    CAS  Article  Google Scholar 

  • Rich, A., Grover, J. P., & Sattler, M. L. (2014). An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale. Journal of the Air and Waste Management Association, 64(1), 61–72.

    CAS  Article  Google Scholar 

  • Rosenman, K. D. (2014). Hydraulic fracturing and the risk of silicosis. Clinical Pulmonary Medicine, 21(4), 167–172.

    Article  Google Scholar 

  • Roy, A. A., Adams, P. J., & Robinson, A. L. (2014). Air pollutant emissions from the development, production, and processing of Marcellus Shale natural gas. Journal of the Air and Waste Management Association, 64(1), 19–37.

    CAS  Article  Google Scholar 

  • Rozell, D. J., & Reaven, S. J. (2012). Water pollution risk associated with natural gas extraction from the Marcellus Shale. Risk Analysis: An International Journal, 32(8), 1382–1393.

    Article  Google Scholar 

  • Saberi, P., Propert, K. J., Powers, M., Emmett, E., & Green-McKenzie, J. (2014). Field survey of health perception and complaints of Pennsylvania residents in the Marcellus Shale region. International Journal of Environmental Research and Public Health, 11(6), 6517–6527.

    Article  Google Scholar 

  • Saunders, P. J., Stewart, A., & Karim, T. (2012). Establishing an environmental public health tracking system in the UK. In Andrius Kavaliunas (Ed.) Proceedings of the 12th World Congress on Environmental Health, Vilnius May 2227, 2012 (pp. 27–32). Bologna: Medimond International Proceedings Division.

  • Schneising, O., Burrows, J. P., Dickerson, R. R., Buchwitz, M., Reuter, M., & Bovensmann, H. (2014). Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations. Earth’s Future, 2(10), 548–558.

    CAS  Article  Google Scholar 

  • Schon, S. C. (2011). Hydraulic fracturing not responsible for methane migration. Proceedings of the National Academy of Sciences, 108(37), E664–E664.

    CAS  Article  Google Scholar 

  • Schrag, D. P. (2012). Is shale gas good for climate change? Daedalus, 141(2), 72–80.

    Article  Google Scholar 

  • Science and Environmental Health Network. (2016). Wingspread conference on the precautionary principle. http://www.sehn.org/wing.html. Accessed 10 Aug 2016.

  • Seaton, A., MacNee, W., Donaldson, K., & Godden, D. (1995). Particulate air pollution and acute health effects. The Lancet, 345(8943), 176–178.

    CAS  Article  Google Scholar 

  • Shahriar, A., Sadiq, R., & Tesfamariam, S. (2014). Life cycle greenhouse gas footprint of shale gas: A probabilistic approach. Stochastic Environmental Research and Risk Assessment, 28(8), 2185–2204.

    Article  Google Scholar 

  • Sharma, S., Bowman, L., Schroeder, K., & Hammack, R. (2015). Assessing changes in gas migration pathways at a hydraulic fracturing site: Example from Greene County, Pennsylvania, USA. Applied Geochemistry, 9(60), 51–58.

    Article  CAS  Google Scholar 

  • Shonkoff, S. B., Hays, J., & Finkel, M. L. (2014). Environmental public health dimensions of shale and tight gas development. Environmental Health Perspectives, 122(8), 787–795.

    Google Scholar 

  • Siegel, D. I., Azzolina, N. A., Smith, B. J., Perry, A. E., & Bothun, R. L. (2015). Methane concentrations in water wells unrelated to proximity to existing oil and gas wells in Northeastern Pennsylvania. Environmental Science and Technology, 49(7), 4106–4112.

    CAS  Article  Google Scholar 

  • Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews, 37, 249–264.

    Article  Google Scholar 

  • Stacy, S. L., Brink, L. L., Larkin, J. C., Sadovsky, Y., Goldstein, B. D., Pitt, B. R., et al. (2015). Perinatal outcomes and unconventional natural gas operations in Southwest Pennsylvania. PLoS ONE, 10(6), e0126425.

    Article  CAS  Google Scholar 

  • Stamford, L., & Azapagic, A. (2014). Life cycle environmental impacts of UK shale gas. Applied Energy, 134, 506–518.

    CAS  Article  Google Scholar 

  • Steinzor, N., Subra, W., & Sumi, L. (2013). Investigating links between shale gas development and health impacts through a community survey project in Pennsylvania. New Solutions, 23(1), 55–83.

    Article  Google Scholar 

  • Stephenson, T., Valle, J. E., & Riera-Palou, X. (2011). Modeling the relative GHG emissions of conventional and shale gas production. Environmental Science and Technology, 45(24), 10757–10764.

    CAS  Article  Google Scholar 

  • Stevens, P. (2003). Resource impact: curse or blessing? A literature survey. Journal of Energy Literature, 9(1), 3–42.

    Google Scholar 

  • Stevens, P. (2013). Shale gas in the United Kingdom. London: Chatham House Royal Institute of International Affairs.

    Google Scholar 

  • Subramanian, R., Williams, L. L., Vaughn, T. L., Zimmerle, D., Roscioli, J. R., Herndon, S. C., et al. (2015). Methane emissions from natural gas compressor stations in the transmission and storage sector: Measurements and comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environmental Science and Technology, 49(5), 3252–3261.

    CAS  Article  Google Scholar 

  • Swarthout, R. F., Russo, R. S., Zhou, Y., Hart, A. H., & Sive, B. C. (2013). Volatile organic compound distributions during the NACHTT campaign at the Boulder Atmospheric Observatory: Influence of urban and natural gas sources. Journal of Geophysical Research: Atmospheres, 118(18), 10614–10637.

    Google Scholar 

  • Swarthout, R. F., Russo, R. S., Zhou, Y., Miller, B. M., Mitchell, B., Horsman, E., et al. (2015). Impact of Marcellus shale natural gas development in Southwest Pennsylvania on volatile organic compound emissions and regional air quality. Environmental Science and Technology, 49(5), 3175–3184.

    CAS  Article  Google Scholar 

  • Task Force on Shale Gas. (2015). Final conclusions and recommendations. London: Task Force on Shale Gas2.

  • The Economist (2013) Deep sigh of relief. The shale gas and oil bonanza is transforming America’s energy outlook and boosting its economy. London: The Economist Newspaper Limited.

  • The Royal Society and The Royal Academy of Engineering. (2012). Shale gas extraction in the UK: a review of hydraulic fracturing. London: The Royal Society and The Royal Academy of Engineering.

    Google Scholar 

  • The UK’s Faculty of Public Health. (2016). http://www.fph.org.uk/what_is_public_health. Accessed 9 Aug 2016.

  • Thompson, C., Hueber, J., & Helmig, D. (2014). Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado. Elementa: Science of the Anthropocene, 2, 000035. doi:10.12952/journal.elementa.000035.

    Google Scholar 

  • Throupe, R., Simons, R. A., & Mao, X. (2013). A review of hydro “fracking” and its potential effects on real estate. Journal of Real Estate Literature, 21(2), 205–232.

    Google Scholar 

  • Tyner, D. R., & Johnson, M. R. (2014). Emission factors for hydraulically fractured gas wells derived using well- and battery-level reported data for Alberta, Canada. Environmental Science and Technology, 48(24), 14772–14781.

    CAS  Article  Google Scholar 

  • United Kingdom Onshore Operators Group. (2016). Community engagement charter oil and gas from unconventional reservoirs. http://www.ukoog.org.uk/images/ukoog/pdfs/communityengagementcharterversion6.pdf. Accessed 10 Aug 2016.

  • van der Elst, N. J., Savage, H. M., Keranen, K. M., & Abers, G. A. (2013). Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science, 341, 164–167.

    Article  CAS  Google Scholar 

  • van der Voort, N., & Vanclay, F. (2015). Social impacts of earthquakes caused by gas extraction in the Province of Groningen, The Netherlands. Environmental Impact Assessment Review, 50, 1–15.

    Article  Google Scholar 

  • Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science and Technology, 48(15), 8334–8348.

    CAS  Article  Google Scholar 

  • Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340(6134), 1235009.

    CAS  Article  Google Scholar 

  • Vinciguerra, T., Yao, S., Dadzie, J., Chittams, A., Deskins, T., Ehrman, S., et al. (2015). Regional air quality impacts of hydraulic fracturing and shale natural gas activity: Evidence from ambient VOC observations. Atmospheric Environment, 2015(110), 144–150.

    Article  CAS  Google Scholar 

  • Wang, R., Gu, Y. J., Schultz, R., Kim, A., & Atkinson, G. (2016). Source analysis of a potential hydraulic-fracturing-induced earthquake near Fox Creek. Alberta. Geophysical Research Letters, 43(2), 564–573.

    Article  Google Scholar 

  • Wang, J., Ryan, D., & Anthony, E. (2011). Reducing the greenhouse gas footprint of shale gas. Energy Policy, 39, 8196–8199.

    CAS  Article  Google Scholar 

  • Warner, N. R., Christie, C. A., Jackson, R. B., & Vengosh, A. (2013a). Impacts of shale gas wastewater disposal on water quality in Western Pennsylvania. Environmental Science and Technology, 47(20), 11849–11857.

    CAS  Article  Google Scholar 

  • Warner, N. R., Jackson, R. B., Darrah, T. H., Osborn, S. G., Down, A., Zhao, K., et al. (2012). Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences, 109(30), 11961–11966.

    CAS  Article  Google Scholar 

  • Warner, N. R., Kresse, T. M., Hays, P. D., Down, A., Karr, J. D., Jackson, R. B., et al. (2013b). Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas. Applied Geochemistry, 35, 207–220.

    CAS  Article  Google Scholar 

  • Wattenberg, E. V., Bielicki, J. M., Suchomel, A. E., Sweet, J. T., Vold, E. M., & Ramachandran, G. (2015). Assessment of the acute and chronic health hazards of hydraulic fracturing fluids. Journal of Occupational and Environmental Hygiene, 12(9), 611–624.

    CAS  Article  Google Scholar 

  • Webb, E., Bushkin-Bedient, S., Cheng, A., Kassotis, C., Balise, V., & Nagel, S. (2014). Developmental and reproductive effects of chemicals associated with unconventional oil and natural gas operations. Reviews on Environmental Health, 29(4), 307–318.

    CAS  Article  Google Scholar 

  • Weber, J. (2012). The effects of a natural gas boom on employment and income in Colorado, Texas, and Wyoming. Energy Economics, 34(5), 1580–1588.

    Article  Google Scholar 

  • Weber, C. L., & Clavin, C. (2012). Life cycle carbon footprint of shale gas: Review of evidence and implications. Environmental Science and Technology, 46(11), 5688–5695.

    CAS  Article  Google Scholar 

  • Weber, B. A., Geigle, J., & Barkdull, C. (2014). Rural North Dakota’s oil boom and its impact on social services. Social Work, 59(1), 62–72.

    Article  Google Scholar 

  • Werner, A. K., Vink, S., Watt, K., & Jagals, P. (2015). Environmental health impacts of unconventional natural gas development: A review of the current strength of evidence. Science of the Total Environment, 505, 1127–1141.

    CAS  Article  Google Scholar 

  • Westaway, R., & Younger, P. L. (2014). Quantification of potential macroseismic effects of the induced seismicity that might result from hydraulic fracturing for shale gas exploitation in the UK. Quarterly Journal of Engineering Geology and Hydrogeology, 47(4), 333–350.

    CAS  Article  Google Scholar 

  • Weyant, C. L., Shepson, P. B., Subramanian, R., Cambaliza, M. O. L., Heimburger, A., McCabe, D., et al. (2016). Black carbon emissions from associated natural gas flaring. Environmental Science and Technology, 50(4), 2075–2081.

    CAS  Article  Google Scholar 

  • Witter, R. Z., McKenzie, L., Stinson, K. E., Scott, K., Newman, L. S., & Adgate, J. (2013). The use of health impact assessment for a community undergoing natural gas development. American Journal of Public Health, 103(6), 1002–1010.

    Article  Google Scholar 

  • Wrenn, D., Kelsey, T., & Jaenicke, E. (2015). Resident vs. nonresident employment associated with Marcellus Shale development. Agricultural and Resource Economics Review, 44(2), 1–19.

    Article  Google Scholar 

  • Zavala-Araiza, D., Allen, D. T., Harrison, M., George, F. C., & Jersey, G. R. (2015a). Allocating methane emissions to natural gas and oil production from shale formations. ACS Sustainable Chemistry and Engineering, 3(3), 492–498.

    CAS  Article  Google Scholar 

  • Zavala-Araiza, D., Lyon, D. R., Alvarez, R. A., Davis, K. J., Harriss, R., Herndon, S. C., et al. (2015b). Reconciling divergent estimates of oil and gas methane emissions. Proceedings of the National Academy of Sciences, 112(51), 15597–15602.

    CAS  Google Scholar 

  • Zavala-Araiza, D., Sullivan, D. W., & Allen, D. T. (2014). Atmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region. Environmental Science and Technology, 48(9), 5314–5321.

    CAS  Article  Google Scholar 

  • Zhang, T., Hammack, R. W., & Vidic, R. D. (2015). Fate of radium in Marcellus shale flowback water impoundments and assessment of associated health risks. Environmental Science and Technology, 49(15), 9347–9354.

    CAS  Article  Google Scholar 

  • Zielinska, B., Campbell, D., & Samburova, V. (2014). Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: A pilot study. Journal of the Air and Waste Management Association, 64(12), 1369–1383.

    CAS  Article  Google Scholar 

  • Ziemkiewicz, P. F., Quaranta, J. D., Darnell, A., & Wise, R. (2014). Exposure pathways related to shale gas development and procedures for reducing environmental and public risk. Journal of Natural Gas Science and Engineering, 1(i6), 77–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Saunders.

Appendices

Appendix 1: Glossary/acronyms

AMCV:

Air monitoring comparison values

ATSDR:

Agency for Toxic Substances and Disease Registry

BTEX:

Benzene, toluene, ethylbenzene and xylene

CHD:

Coronary heart defects

CIs:

Confidence intervals

CNS:

Central nervous system

CO:

Carbon monoxide

CS2 :

Carbon disulphide

DBP:

Disinfection by-products

DEP:

Department of Environmental Protection

EDC:

Endocrine disrupting chemical

EPA:

Environmental Protection Agency

EUR:

Estimated ultimate recovery

FPH:

Faculty of Public Health

GHG:

Greenhouse gas

GI:

Gastrointestinal

GIS:

Geographic information system

GWP:

Global warming potential

H2S:

Hydrogen sulphide

HAPs:

Hazardous air pollutants

HI:

Hazard index

HVHF:

High-volume hydraulic fracturing

IRIS:

Integrated risk information system

LCA:

Life cycle analysis

LHV:

Lower heating value

LUST:

Leaking underground storage tanks

MCL:

Maximum content level

ML:

Local magnitude

Mw:

Magnitude scale

NIOSH:

National Institute for Occupational Safety and Health

NMHCs:

Non-methane hydrocarbons

NORM:

Naturally occurring radioactive materials

NOx:

Oxides of nitrogen

NTD:

Neural tube defects

OEL:

Occupational exposure limit

OSHA:

Occupational Safety and Health Administration

ONG:

Oil and natural gas

PAHs:

Polycyclic aromatic hydrocarbons

PEL:

Permissible exposure limit

PM:

Particulate matter

PSE Healthy Energy:

Physicians, Scientists and Engineers for Healthy Energy

PSM:

Propensity score matching

REL:

Recommended exposure limit sure limit

SGA:

Small for gestational age

SIRs:

Standardised incidence ratios

SO2 :

Sulphur dioxide

TCEQ:

Texas Commission on Environmental Quality

TLV:

Threshold limit value

UOG:

Unconventional oil and gas extraction

VOCs:

Volatile organic compounds

WTP:

Willing to pay

WtW:

Well to wire

WWTP:

Wastewater treatment plant

Appendix 2: Search strategy

  1. 1.

    UNGD: Shale gas, shale gas development, shale gas drill$, shale gas exploration, shale gas industry, shale gas production, unconventional gas, unconventional gas extraction, frack$, hydraulic fracturing, fracturing, high volume hydraulic fracturing, HVHF

  2. 2.

    Exposure: Air quality, pollution, water, land, contamination, toxin$, PAH$, benzene, methane, metal$, diesel fume$, VOC$, endocrine disrupt$, PM, particulate matter, particulate$, naturally occurring radioactive mat$, fume$

  3. 3.

    Health: Public health, cancer$, neurological, neurobehavioral, reproductive, Low birth weight, birth outcome$, congenital heart defect$, neural tube defect$, oral cleft$, pre term birth$, stress, occupational health, mental health, mental wellbeing, conception, infertility

  4. 4.

    Nuisance: Noise, dust, odour$, odor$, light, traffic, congestion

  5. 5.

    Climate change: Climate change, green house gas$, GHGs, methane, energy policy, fuel policy, energy security

  6. 6.

    Economic: Econom$, local economy, water sustainability, income, employment, disposable income, fuel poverty, rural economy$

  7. 7.

    Seismicity: Seism$, earthquake$, tremor$

1 and 2, 1 and 3, 1 and 4, 1 and 5, 1 and 6, 1 and 7.

Databases

The following databases were searched:

  • Ovid Medline, Economic and Social Research Council, Centre for Economic Policy Research.

Citation searches

Reference lists were examined for papers not identified in searches.

Grey literature/internet/key informants

Includes advice from recognised experts in the field and domestic and international government and key institutional websites.

Inclusion/exclusion

Inclusion:

  • All: English language, no year restrictions, international, national, regional or local effects, exclusively or significantly related to, or specifically considers HVHF and any associated infrastructure, development, operation or legacy activities/impacts.

  • Exposure: human, all environmental media, measure of exposure (direct or indirect).

  • Health: clinically diagnosed and self-reported symptoms.

  • Nuisance/economic: direct or indirect economic, environmental, nuisance and/or social impacts.

  • Climate change/policy: all GHGs, impact on compliance with fuel/energy and climate change policies and commitments.

Exclusion: animal studies, non-English, anonymous pieces, studies of UNGD technology, environmental exposures based on estimates with no measured data, levels of contamination in waste products with no assessment or estimation of exposure potential, traffic-related accidents (the UK industry will not require the level of heavy vehicle support reported in the USA and elsewhere), non-peer-reviewed commentaries, opinions, editorials, letters to the editor.

Paper review and data extraction

Data extracted to a pre-defined data extraction table. A 10% sample of included papers independently assessed by two reviewers and unresolved anomalies referred to the other authors for resolution.

Appendix 3: Excluded papers

  Paper Reason for rejection
1. Abrahams LS et al. Life Cycle Greenhouse Gas Emissions From U.S. Liquefied Natural Gas Exports: Implications for End Uses. Environ. Sci. Technol., 2015, 49 (5), pp 3237–3245 LNG exports
2. Ahmadov R, McKeen S, Trainer M, Banta R, Brewer A, Brown S, et al. 2015. Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmos. Chem. Phys. 15:411–429 Oil and gas—no distinction of dominant source
3. Albertson JD et al. A Mobile Sensing Approach for Regional Surveillance of Fugitive Methane Emissions in Oil and Gas Production. Environ. Sci. Technol., 2016, 50 (5), pp 2487–249 Describes method for detecting methane
4. Alexander BM et al. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers. J Occup Environ Hyg. 2016, 13(8):628–38 Testing emission control
5. Allard DJ. Pennsylvania’s technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry. Health Phys 2015;108(2):178 Presentation
6. Allen DT et al. Methane Emissions from Process Equipment at Natural Gas Production Sites in the United States: Pneumatic Controllers Environ. Sci. Technol., 2015, 49 (1), pp 633–640 Principally natural gas but includes conventional and unconventional and oil. No distinction of dominant source
7. Alvarez, Ramón A, et al. Greater Focus Needed on Methane Leakage from Natural Gas Infrastructure. Proceedings of the National Academy of Sciences 109 (2012): 6435–6440 Examines changes to vehicle fleet as well as use for electricity
8. Asche F et al. Energy Policy, 2012, vol. 47, issue C, pages 117–124 Not an issue for UK
9. Aucott ML and Melillo JM. A Preliminary Energy Return on Investment Analysis of Natural Gas from the Marcellus Shale. Journal of Industrial Ecology, 17: 668–679 Doesn’t address economic (dis)benefits
10. Bern CR, Clark ML, Schmidt TS, Holloway JM, McDougal RR. 2015. Soil disturbance as a driver of increased stream salinity in a semiarid watershed undergoing energy development. J. Hydrol. 524:123–136; doi:10.1016/j.jhydrol.2015.02.020 Website link. Refers to soil disturbance of any type
11. Binnion, M. 2012. How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful. Marine and Petroleum Geology. 31(1): 3–7 Doesn’t address economic (dis)benefits
12. Birdsell DT, Rajaram H, Dempsey D, Viswanathan HS. 2015. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resour. Res. 51:7159–7188; doi:10.1002/2015WR017810 Simulation
13. Bolden AL et al. New Look at BTEX: Are Ambient Levels a Problem? Environ. Sci. Technol., 2015, 49 (9), pp 5261–5276 Review of non-cancer health effects of BTEX
14. Boothroyd IM et al. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells. Sci Total Environ. 2016 Mar 15;547:461–9 Abandoned-not relevant to UK
15. Bowen, Z. H., et al. (2015), Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development—Why existing national data sets cannot tell us what we would like to know, Water Resour. Res., 51, 704–71 Oil and gas—no distinction of dominant source
16. Boyle MD, Payne-Sturges DC, Sangaramoorthy T, Wilson S, Nachman KE, Babik K, et al. (2016) Hazard Ranking Methodology for Assessing Health Impacts of Unconventional Natural Gas Development and Production: The Maryland Case Study. PLoS ONE 11(1): e0145368. doi:10.1371/journal.pone.0145368 Methodological and hypothetical examples
17. Brantley HL, Thoma ED, Eisele AP. 2015. Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements. Journal of the Air & Waste Management Association 65:1072–1082 Oil and gas—no distinction of dominant source
18. Brantley SL, Yoxtheimer D, Arjmand S, Grieve P, Vidic R, Pollak J, et al. 2014. Water resource impacts during unconventional shale gas development: The Pennsylvania experience. International Journal of Coal Geology; doi:10.1016/j.coal.2013.12.017 Shortcomings of monitoring of contraventions
19. British Columbia Oil and Gas Commission 2012 Not peer-reviewed
20. Brown D, Weinberger B, Lewis C, Bonaparte H. 2014. Understanding exposure from natural gas drilling puts current air standards to the test. Rev Environ Health 29:277–292; doi:10.1515/reveh-2014-0002 Inadequacy of air quality standards
21. Brown DR, Lewis C, Weinberger BI. 2015. Human exposure to unconventional natural gas development: A public health demonstration of periodic high exposure to chemical mixtures in ambient air. Journal of Environmental Science and Health, Part A 50: 460–472 Hypothetical
22. Brown SPA et al. Resources for the Future. Natural gas: a bridge to a low-carbon future? Resources 2009;Issue Brief 09-11 Think tank briefing
23. Busch C and Gimon E. 2014. Natural Gas versus Coal: Is Natural Gas Better for the Climate? The Electricity Journal, 27 (7): 97–111 Natural gas in general
24. Burkhart 2013 Potential radon release during fracturing in Colorado. Proceedings of the 2013 International AARST Symposium Conference proceedings
25. Carlton AG, Little E, Moeller M, Odoyo S, Shepson PB. 2014. The Data Gap: Can a Lack of Monitors Obscure Loss of Clean Air Act Benefits in Fracking Areas? Environ. Sci. Technol. 48:893–894; doi:10.1021/es405672t Methodological
26. Cathles LM et al. A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Climatic Change, DOI 10.1007/s10584-011-0333-0 Commentary
27. Cathles, L. M. (2012), Assessing the greenhouse impact of natural gas, Geochem. Geophys. Geosyst., 13, Q06013, doi:10.1029/2012GC004032 Natural gas in general
28. Caulton DR et al.Methane Destruction Efficiency of Natural Gas Flares Associated with Shale Formation Wells. Environ. Sci. Technol., 2014, 48 (16), pp 9548–9554 Efficiency of flaring
29. Chabudzinski L, Chmiel S, Michalczyk Z. 2015. Metal content in the waters of the upper Sanna River catchment (SE Poland): condition associated with drilling of a shale gas exploration wellbore. Environ. Earth Sci. 74:6681–6691; doi:10.1007/s12665-015-4668-0 Exploratory borewell
30. Craddock,H. Shale gas in Europe: The chemical challenge. Materials World. 2014 22 2:41 Magazine article
31. Darbouche H. MENA’s Growing Natural Gas Deficit and the Issue of Domestic Prices”, Energy Strategy Reviews, 2013, 2 (1): 116–121 Not an issue in the UK
32. de Melo-Martin I et al. The role of ethics in shale gas policies. Sci Total Environ 2014 (470–471) 1114 Ethics
33. Edwards PM et al. High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature. 2014, 514(7522):351–4 Letter
34. Edwards PM et al. Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah. Atmos. Chem. Phys., 13, 8955–8971, doi:10.5194/acp-13-8955-2013, 2013 Simulation
35. Elliot TR and Celia MA. Potential Restrictions for CO2 Sequestration Sites Due to Shale and Tight Gas Production. Environ. Sci. Technol., 2012, 46 (7), pp 4223–4227 Identifies sites suitable for carbon storage and overlap with shale areas that might be developed-hypothetical
36. Entrekin SA, Maloney KO, Kapo KE, Walters AW, Evans-White MA, Klemow KM. 2015. Stream Vulnerability to Widespread and Emergent Stressors: A Focus on Unconventional Oil and Gas. PLoS ONE 10:e0137416; doi:10.1371/journal.pone.0137416 Indices to describe watershed vulnerability
37. Fanchi JR et al. Probabilistic Decline Curve Analysis of Barnett, Fayetteville, Haynesville, and Woodford Gas Shales. Journal of Petroleum Science and Engineering 2013, 50 109:308–311 Production modelling
38. Fedak F et al. Birth Outcomes and Natural Gas Development: Methodological Limitations http://dx.doi.org/10.1289/ehp.1408647 volume 122 | number 9 | September 2014 Letter
39. Field RA et al. Air quality concerns of unconventional oil and natural gas production. Environmental Science. Processes and Impacts 2014;16(5):954–969 Theoretical
40. Field RA, Soltis J, McCarthy MC, Murphy S, Montague DC. 2015. Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter. Atmos. Chem. Phys. 15:3527–3542 Oil and gas—no distinction of dominant source
41. Finkel ML and Law A. The rush to drill for natural gas: a public health cautionary tale. 2011 101, 5: 784–785 Commentary
42. Franco B, Bader W, Toon GC, Bray C, Perrin A, Fischer EV, et al. 2015. Retrieval of ethane from ground-based FTIR solar spectra using improved spectroscopy: Recent burden increase above Jungfraujoch. Journal of Quantitative Spectroscopy and Radiative Transfer 160:36–49; doi:10.1016/j.jqsrt.2015.03.017 Not HVHF
43. Freeman CM et al. A numerical study of performance for tight gas and shale gas reservoir systems Journal of Petroleum Science and Engineering 108: 22–39 Doesn’t address economic (dis)benefits
44. Gallagher ME et al. Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety. Environ. Sci. Technol. Lett., 2015, 2 (10), pp 286–291 Remedial action
45. Gao J and Fengqi U - Shale Gas Supply Chain Design and Operations toward Better Economic and Life Cycle Environmental Performance: MINLP Model and Global Optimization Algorithm. ACS Sustainable Chem. Eng., 2015, 3 (7), pp 1282–1291 Describes LCA model development-no comparison with other energy sources
46. Gassiat C et al. 2013. Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resour. Res. 49:8310–8327; doi:10.1002/2013WR014287 Model to identify conditions needed for slow migration
47. Gentner DR et al. Emissions of organic carbon and methane from petroleum and dairy operations in California’s San Joaquin Valley. Emissions of organic carbon and methane from petroleum and dairy operations in California’s San Joaquin Valley, Atmos. Chem. Phys., 14, 4955–4978, doi:10.5194/acp-14-4955-2014, 2014 Not HVHF
48. Gilmore K et al. Transport of Hydraulic Fracturing Water and Wastes in the Susquehanna River Basin, Pennsylvania. 2013, Transport of Hydraulic Fracturing Water and Wastes in the Susquehanna River Basin, Pennsylvania.” J. Environ. Eng., 10.1061/(ASCE)EE.1943-7870.0000810, B4013002 Estimates GHG contribution of transport in a specific area and transport of fracturing water not relevant to UK
49. Goldstein BD The importance of public health agency independence: Marcellus shale gas drilling in Pennsylvania. Am J Public Health. 2014,104(2):e13–5 Lack of public health input to risk assessment
50. Goldstein BD Kriesky J and Pavliakova B Environ Health Perspect. 2012 Apr; 120(4): 483–486 Review of expertise on advisory panels
51. Goodwin S; Carlson K; Knox K; Douglas C; Rein L. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado. Environmental Science & Technology. 48(10):5991–5, 2014 Efficient water usage-not relevant to UK
52. Gracceva F and Zeniewski P. Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model) Energy 2013, 57:443–457 Doesn’t address economic (dis)benefits
53. Graham J, Irving J, Tang X, Sellers S, Crisp J, Horwitz D, et al. 2015. Increased traffic accident rates associated with shale gas drilling in Pennsylvania. Accident Analysis & Prevention 74:203–209; doi:10.1016/j.aap.2014.11.003 Traffic accidents
54. Hammes, U et al. Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany. Environ Earth Sci 2013, 70: 3797. doi:10.1007/s12665-013-2724-1 Resource estimates
55. Harriss R et al. Using Multi-Scale Measurements to Improve Methane Emission Estimates from Oil and Gas Operations in the Barnett Shale Region, Texas. Environ. Sci. Technol., 2015, 49 (13), pp 7524–7526 Viewpoint: oil and gas
56. Heilweil VM, Stolp BJ, Kimball BA, Susong DD, Marston TM, Gardner PM. 2013. A Stream-Based Methane Monitoring Approach for Evaluating Groundwater Impacts Associated with Unconventional Gas Development. Groundwater 51:511–524; doi:10.1111/gwat.12079 Sampling method
57. Helmig - Highly Elevated Atmospheric Levels of Volatile Organic Compounds in the Uintah Basin, Utah Environ. Sci. Technol., 2014, 48 (9), pp 4707–4715 Gas field but no reference to HVHF
58. Hibbard PJ and Shatzki. The Interdependence of Electricity and Natural Gas: Current Factors and Future Prospects. The Electricity Journal 2012, 25(4):6–17 Not relevant
59. Holahan R and Arnold G. An institutional theory of hydraulic fracturing policy. Ecological Economics 2013, 94 127–134 Doesn’t address economic (dis)benefits
60. Howard T et al. Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure. J Air Waste Manag Assoc. 2015 65(7):856–62 Implications of sensor failure
61. Howarth, R.W., Santoro, R. & Ingraffea, A. Climatic Change (2012) 113: 537. doi:10.1007/s10584-012-0401-0 Response to Cathles paper
62. Ikonnikova S et al. Factors influencing shale gas production forecasting: Empirical studies of Barnett, Fayetteville, Haynesville, and Marcellus Shale plays. 2015, Factors influencing shale gas production forecasting: Empirical studies of Barnett, Fayetteville, Haynesville, and Marcellus Shale plays. Economics of Energy & Environmental Policy 2015, 4, (1): 19–35 Doesn’t address economic (dis)benefits
63. Jeong S et al. Spatially Explicit Methane Emissions from Petroleum Production and the Natural Gas System in California. Environ. Sci. Technol., 2014, 48 (10): 5982–5990 Not HVHF focused
64. Johnson Dr et al. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities. Environ. Sci. Technol., 2015, 49 (13): 8132–8138 Compares UNG wells with CVNG wells
65. Kahrilas,G. A.Blotevogel,J. Stewart,P. S. Borch,T. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity 2015 49 (1) 16–32 Review of considerations in selecting biocides
66. Kaiser MJ. Haynesville shale play economic analysis. Journal of Petroleum Science and Engineering 2012, 82–83:75–89 Economic viability of this play
67. Kaiser MJ. Profitability assessment of Haynesville shale gas well. Energy 2012, 50 38(1):315–330 Doesn’t address economic (dis)benefits
68. Kaktins - Drilling the Marcellus shale for natural gas: environmental health issues for nursing The Pennsylvania nurse react-text: 44 66(1):4–8; quiz 8-9/react-text react-text: 47/react-text react-text: 48 March 2011 General overview for nurses
69. Kang M et al. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. PNAS 2014, 111(51):18173–18177 Abandoned sites
70. Kang M, Baik E, Miller AR, Bandilla KW, Celia MK. 2015. Effective Permeabilities of Abandoned Oil and Gas Wells: Analysis of Data from Pennsylvania. Environ. Sci. Technol. 49:4757–4764; doi:10.1021/acs.est.5b00132 Abandoned oil and gas wells
71. Karion A et al. Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region. Environ. Sci. Technol., 2015, 49 (13): 8124–813 Differentiates between oil/gas-related emissions and other sources but specifically states no attribution to HVHF
72. Karion A et al. 2015 - Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters 2013, 40(16):4393–4397 Oil and gas—no distinction of dominant source
73. Kerschke DI and Schulz H. The shale gas potential of Tournaisian, Visean, and Namurian black shales in North Germany: baseline parameters in a geological context. Environ Earth Sci 2013, 70: 3817. doi:10.1007/s12665-013-2745-9 Doesn’t address economic (dis)benefits
74. Kopald, D. E. The Conference on Corporate Interference with Science and Health: fracking, food and wireless: genesis, rationale, and results. 2013 28 (4):145–158 Conference proceedings
75. Korfmacher KS et al. Public health and high volume hydraulic fracturing. New Solut. 2013;23(1):13–31. doi: 10.2190/NS.23.1.c Public health policy discussion
76. Kort EA et al. Four corners: The largest US methane anomaly viewed from space. Geophysical Research Letters 2014, 41(19): 6898–6903 Gas, coal and coalbed methane
77. Koss AR, de Gouw J, Warneke C, Gilman JB, Lerner BM, Graus M, et al. 2015. Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event. Atmos. Chem. Phys. 15:5727–5741; doi:10.5194/acp-15-5727-2015 Oil and gas—no distinction of dominant source
78. Kovats S et al. The health implications of fracking. The Lancet 2014, 383 (9919): 757–758 Commentary on conference
79. Krzyzanowski - Environmental pathways of potential impacts to human health from oil and gas development in northeast British Columbia, Canada Environmental Reviews, 2012, 20(2): 122–134, 10 Oil and gas—no distinction of dominant source
80. Lamb BK et al. Direct Measurements Show Decreasing Methane Emissions from Natural Gas Local Distribution Systems in the United States. Environ. Sci. Technol., 2015, 49 (8): 5161–5169 Distribution systems—all gas doesn’t specify UNG
81. Lan X, Talbot R, Laine P, Torres A, Lefer B, Flynn J. 2015. Atmospheric Mercury in the Barnett Shale Area, Texas: Implications for Emissions from Oil and Gas Processing. Environ. Sci. Technol. 49:10692–10700 Oil and gas—no distinction of dominant source
82. Lauver LS Environmental health advocacy: an overview of natural gas drilling in northeast Pennsylvania and implications for pediatric nursing J Pediatr Nurs. 2012 Aug;27(4):383–9 Guidance for nurses on evaluating issue
83. Law A et al. Public Health England’s draft report on shale gas extraction. BMJ 2014;348:g2728 Editorial
84. Lee J. The regional economic impact of oil and gas extraction in Texas. Energy Policy, 2015, (56) 87:60–71 University briefing paper
85. Lee, L., Wooldridge, P. J., deGouw, J., Brown, S. S., Bates, T. S., Quinn, P. K., and Cohen, R. C.: Particulate organic nitrates observed in an oil and natural gas production region during wintertime, Atmos. Chem. Phys., 15, 9313–9325 Oil and gas—no distinction of dominant source
86. Lipscomb,C. A. Wang,Y. Kilpatrick,S. J. Unconventional shale gas development and real estate valuation issues. 2012 42 (2): 161–175 Unavailable
87. Llewellyn GT, Dorman F, Westland JL, Yoxtheimer D, Grieve P, Sowers T, et al. 2015. Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. PNAS 201420279; doi:10.1073/pnas.1420279112 Pre-drilling salinisation sources
88. Lu X. Implications of the Recent Reductions in Natural Gas Prices for Emissions of CO2 from the US Power Sector. Environ. Sci. Technol., 2012, 46 (5): 3014–3021 US gas prices-not relevant to UK
89. Lyon DR et al. Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region. Environ. Sci. Technol., 2015, 49 (13): 8147–8157 Oil and gas inventory estimates
90. Mackie P, Johnman C, Sim F. 2013. Hydraulic fracturing: a new public health problem 138 years in the making? Public Health 127:887–888 Editorial
91. Macy TR et al. Carbon Footprint Analysis of Source Water for Hydraulic Fracturing: A Case Study of Mine Water Versus Freshwater. Water Environ 2015, 34: 20 Not relevant to UK
92. Marchese AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. Environ. Sci. Technol., 2015, 49 (17): 10718–10727 All natural gas
93. McCarron GP, King D. 2014. Unconventional natural gas development: economic salvation or looming public health disaster? Australian and New Zealand Journal of Public Health 38:108–109 Commentary
94. McCawley M. Air Contaminants Associated with Potential Respiratory Effects from Unconventional Resource Development Activities. Semin Respir Crit Care Med. 2015, 36(3):379–87 No measures and uses traffic volumes as metric
95. McCubbin DR et al. Quantifying the health and environmental benefits of wind power to natural gas. Energy Policy 2013, 53: 429–441 Reject-wind power
96. McCubbin –D and Sovacool BK. The Hidden Factors That Make Wind Energy Cheaper than Natural Gas in the United States. Electricity Journal, 24 (9): 84–95 Wind energy
97. McDermott-Levy R, Kaktins N, Sattler B. Fracking, the environment, and health. 2013 113 (6): 45–51 General implications for nursing
98. McGlade C et al. Unconventional gas – A review of regional and global resource estimates. Energy 2013, 55: 571–584. Resource estimates
99. McKain K et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. PNAS 2015 Feb, 112(7):1941–6 NG infrastructure and use and not UNG focused
100. Melikoglu M. Shale gas: Analysis of its role in the global energy market. Renewable and Sustainable Energy Reviews 2014, 37: 460–468 Doesn’t address economic (dis)benefits
101. Meng, Q. Spatial analysis of environment and population at risk of natural gas fracking in the state of Pennsylvania, USA. Sci Total Environ 2015, 515–516: 198–206 Uses GIS to map ‘risk’ defined simply as proximity. No exposure measures or estimates and no health data
102. Miller SM et al. Anthropogenic emissions of methane in the United States. PNAS 2013, 110(50): 20018–20022 General assessment of methane sources
103. Mitchell AL and Casman EA. Economic Incentives and Regulatory Framework for Shale Gas Well Site Reclamation in Pennsylvania. Environ. Sci. Technol., 2011, 45 (22): 9506–9514 Doesn’t address economic (dis)benefits
104. Mitchell AL et al. Measurements of Methane Emissions from Natural Gas Gathering Facilities and Processing Plants: Measurement Results. Environ. Sci. Technol., 2015, 49 (5): 219–3227 All natural gas
105. Moitra, S. Puri, R. Paul, D. Huang, Y.-C T. Global perspectives of emerging occupational and environmental lung diseases. 2015 21 (2): 114–120 General review of potential sentinel occupational diseases
106. Myhrvold NP and Caldeira K. Greenhouse gases, climate change and the transition from coal to low-carbon electricity. Environmental Research Letters Journal 2012, 7(1) No specific consideration of HVHF
107. Nathan BJ et al. Near-Field Characterization of Methane Emission Variability from a Compressor Station Using a Model Aircraft. Environ. Sci. Technol., 2015, 49 (13): 7896–7903 Compressor station
108. Oglend - Shale Gas Boom Affecting the Relationship Between LPG and Oil Prices Not an issue in the UK
109. Ogneva-Himmelberger Y, Huang L. 2015. Spatial distribution of unconventional gas wells and human populations in the Marcellus Shale in the United States: Vulnerability analysis. Applied Geography 60:165–174 Analysis of spatial relationship between socio-economic factors and UNGD sites
110. Olaguer EP et al. Updated methods for assessing the impacts of nearby gas drilling and production on neighborhood air quality and human health. J Air Waste Manag Assoc. 2016, 66(2):173–83 Methodological
111. Olaguer EP. 2012. The potential near-source ozone impacts of upstream oil and gas industry emissions. J Air Waste Manag Assoc 62: 966–977 Hypothetical
112. Oltmans S et al. Anatomy of wintertime ozone associated with oil and natural gas extraction activity in Wyoming and Utah. Elementa: Science of the Anthropocene, 2. 000024 Meteorological
113. Pacsi AP, Alhajeri NS, Zavala-Araiza D, Webster MD, Allen DT. 2013. Regional air quality impacts of increased natural gas production and use in Texas. Environ. Sci. Technol. 47:3521–3527; doi:10.1021/es3044714 Production estimated
114. Pacsi AP, Kimura Y, McGaughey G, Mcdonald-Buller EC, Allen DT. 2015. Regional ozone impacts of increased natural gas use in the Texas power sector and development in the Eagle Ford shale. Environ. Sci. Technol.; doi:10.1021/es5055012 Natural gas use
115. Parker KM, Zeng T, Harkness J, Vengosh A, Mitch WA. 2014. Enhanced Formation of Disinfection By-Products in Shale Gas Wastewater-Impacted Drinking Water Supplies. Environ. Sci. Technol.; doi:10.1021/es5028184 Experimental
116. Patzek TW et al. Gas production in the Barnett Shale obeys a simple scaling theory. PNAS 2013, 110(49): 19731–19736 Doesn’t address economic (dis)benefits
117. Peischel J et al. Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research: Atmospheres 2013;118(10):4974–4990 Not focused on shale
118. Pekney NJ et al. Measurement of atmospheric pollutants associated with oil and natural gas exploration and production activity in Pennsylvania’s Allegheny National Forest. J Air Waste Manag Assoc. 2014, 64(9):1062–72 Oil and gas—no distinction of dominant source
119. Penning TM, Breysse PN, Gray K, Howarth M, Yan B. 2014. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on Unconventional Natural Gas Drilling Operations. Environ Health Perspect 122:1155–1159 Working group research recommendations
120. Perry, S. L. Using ethnography to monitor the community health implications of onshore unconventional oil and gas developments: examples from Pennsylvania’s Marcellus Shale. 2013 23 (1) 33-53 Methodological
121. Pétron G, Frost G, Miller BR, Hirsch AI, Montzka SA, Karion A, et al. 2012. Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. J. Geophys. Res. 117:D04304 Pilot study-oil, gas and other sources
122. Pétron G, Karion A, Sweeney C, Miller BR, Montzka SA, Frost G, et al. 2014. A new look at methane and non-methane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res. Atmos Oil and gas—no distinction of dominant source
123. Phillips NG et al. Mapping urban pipeline leaks: Methane leaks across Boston. Environ Pollut. 2013, 173:1–4 Urban pipeline leaks
124. Powers M, Saberi P, Pepino R, Strupp E, Bugos E, Cannuscio CC. 2015. Popular Epidemiology and “Fracking”: Citizens’ Concerns Regarding the Economic, Environmental, Health and Social Impacts of Unconventional Natural Gas Drilling Operations. J. Community Health 40:534–541 Analysis of letters to local newspaper
125. Pratson LF et al. Fuel Prices, Emission Standards, and Generation Costs for Coal vs Natural Gas Power Plants. Environ Sci Technol. 2013, 47(9):4926–33 Relates to power stations
126. Prenni - Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results. Environ. Sci. Technol., 2013, 47 (9), 4926–4933 Fossil fuel
127. Rafferty MA, Limonik E. 2013. Is shale gas drilling an energy solution or public health crisis? Public Health Nurs 30:454–462 Call for nursing research and hia
128. Rahm BG, Bates JT, Bertoia LR, Galford AE, Yoxtheimer DA, Riha SJ. Wastewater management and Marcellus Shale gas development: Trends, drivers, and planning implications. J Environ Manage 2013, 120:105–113 Trends in wastewater use and policies
129. Rappenglück B, Ackermann L, Alvarez S, Golovko J, Buhr M, Field RA, et al. 2014. Strong wintertime ozone events in the Upper Green River basin, Wyoming. Atmos. Chem. Phys. 14:4909–4934; doi:10.5194/acp-14-4909-2014 Fossil fuel exploration
130. Reagan MT, Moridis GJ, Keen ND, Johnson JN. 2015. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport. Water Resour. Res. 51:2543–2573; doi:10.1002/2014WR016086 Hypothetical
131. Rella CW et al. Measuring Emissions from Oil and Natural Gas Well Pads Using the Mobile Flux Plane Technique. Environ. Sci. Technol., 2015, 49 (7): 4742–4748 Proportion of emissions by well pad
132. Rich,A Grover,J. Sattler,M. Hunt,A. Holbrook,J. Howard,J. T1 - Air emissions from natural gas exploration and mining in the Barnett shale geologic reservoir. 2012 1 116–133. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA Conference proceedings-published in included paper from JAWMA
133. Ritter K et al. Industry experience in deriving updated emission factors to characterize methane emissions for select emission sources in natural gas systems. Carbon Management 2014, 5(5–6): 107 Review of industry efforts to characterise emissions
134. Rodriguez MA, Barna MG, Moore T. 2009. Regional impacts of oil and gas development on ozone formation in the western United States. J Air Waste Manag Assoc 59: 1111–1118 Oil and gas—no distinction of dominant source
135. Rutter AP, Griffin RJ, Cevik BK, Shakya KM, Gong L, Kim S, et al. 2015. Sources of air pollution in a region of oil and gas exploration downwind of a large city. Atmospheric Environment 120:89–99; doi:10.1016/j.atmosenv.2015.08.073 Oil and gas—no distinction of dominant source
136. Sanchez N. and Mays DC. Effect of methane leakage on the greenhouse gas footprint of electricity generation. Climatic Change 2015, 133: 169. doi:10.1007/s10584-015-1471-6 Hypothetical model to identify leakage level required to eliminate advantage over coal
137. Sang W, Stoof CR, Zhang W, Morales VL, Gao B, Kay RW, et al. 2014. Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone. Environ. Sci. Technol.; doi:10.1021/es501441e Colloid transport
138. Schmidt CW. Blind Rush? Shale Gas Boom Proceeds Amid Human Health Questions. Environ Health Perspect 2011, 119:a348–a353 Environews article-subject to internal editing
139. Schnell RC, Oltmans SJ, Neely RR, Endres MS, Molenar JV, White AB. 2009. Rapid photochemical production of ozone at high concentrations in a rural site during winter. Nature Geosci 2:120–122; doi:10.1038/ngeo415 Letter
140. Schwartz MO. 2014. Modelling the hypothetical methane-leakage in a shale-gas project and the impact on groundwater quality. Environ Earth Sci 73:4619–4632; doi:10.1007/s12665-014-3787-3 Hypothetical
141. Schwietzke - Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane. Environ. Sci. Technol., 2014, 48 (14), pp 7714–7722 All natural gas no distinction of dominant source
142. Shearer - The effect of natural gas supply on US renewable energy and CO2 emissions. Environ. Res. Lett. 9 (2014) 094008 (8 pp) All natural gas no distinction of dominant source
143. Skalak KJ, Engle MA, Rowan EL, Jolly GD, Conko KM, Benthem AJ, et al. 2014. Surface disposal of produced waters in western and southwestern Pennsylvania: Potential for accumulation of alkali-earth elements in sediments. International Journal of Coal Geology 126:162–170; doi:10.1016/j.coal.2013.12.001 Surface disposal of produced water (not relevant to UK)
144. States S, Cyprych G, Stoner M, Wydra F, Kuchta J, Monnell J, et al. 2013. Brominated THMs in Drinking Water: A Possible Link to Marcellus Shale and Other Wastewaters. Journal - American Water Works Association 105:E432–E448; doi:10.5942/jawwa.2013.105.0093 Wastes associated with sources including non-HVHF
145. Stephenson E et al. Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development? Energy Policy 2012, 46: 452–459 General discussion of uncertainties
146. Subramanian R et al. Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environmental Science and Technology 2015, 49(5): 3252–3261 Identification of super-emitters and comparison of emissions with EPA emissions
147. Tao Z and Clarens A. Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates. Environ. Sci. Technol., 2013, 47 (19):11318–11325 Relates to carbon-capture capacity
148. Teasdale CJ et al. Ground Gas Monitoring: Implications for Hydraulic Fracturing and CO2 Storage. Environ Sci Technol 2014, 48(23):13610–13616 Technical assessment of ground-level monitoring techniques
149. Thompson CR, Hueber J, Helmig D. 2014. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado. Elementa: Science of the Anthropocene 2:000035 Oil and gas—no distinction of dominant source
150. Townsend-Small A et al. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region. Environ. Sci. Technol., 2015, 49 (13): 8175–8182 Methods of source apportionment
151. Tyner DR and Johnson MR. Emission Factors for Hydraulically Fractured Gas Wells Derived Using Well- and Battery-level Reported Data for Alberta, Canada. Environ Sci Technol. 2014, 48(24):14772–81 Relative contribution of differing phases but no analysis of overall significance of UNGD
152. Venkatesh A et al. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ. Sci. Technol., 2011, 45 (19): 8182–8189 Domestic and imported natural gas
153. Wakamatsu H and Aruga K. The impact of the shale gas revolution on the U.S. and Japanese natural gas markets. Energy Policy 2013, 62 (C): 1002–1009 Changes in US and Japanese natural gas market structures
154. Walters K, Jacobson J, Kroening Z, Pierce C. 2015. PM2.5 Airborne Particulates Near Frac Sand Operations. J. Environ. Health 78: 8–12 Not HVHF
155. Walton J and Woocay A. Environmental issues related to enhanced production of natural gas by hydraulic fracturing. 2013 8 (1) 62–71 Non-peer-reviewed section of journal
156. Warneke C et al. PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013. Atmos. Meas. Tech 2015, 8: 411–420 Methodological
157. Warneke C, Gseleger F, Edwards PM, Dube W, Pétron G, Kofler J, et al. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition. Atmos. Chem. Phys. Discuss 2014, 14:11895–11927; doi:10.5194/acpd-14-11895-2014 Differentiates between the composition of emissions from oil and gas wells but no discussion of significance in terms of exposure/GHG
158. Warner NR, Darrah TH, Jackson RB, Millot R, Kloppmann W, Vengosh A. 2014. New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations. Environ. Sci. Technol.; doi:10.1021/es5032135 Methodological
159. Weber - A decade of natural gas development: The makings of a resource curse? Selected Paper prepared for presentation at the Agricultural & Applied Economics Association’s 2013 AAEA & CAES Joint Annual Meeting, Washington, DC, August 4–6, 2013 Paper prepared for presentation at meeting and single author’s own views
160. Weijermars R. Economic appraisal of shale gas plays in Continental Europe. Applied Energy 2013,106:100–115 Economics of the process not impacts
161. Weijermars R. US shale gas production outlook based on well roll-out rate scenarios. Applied Energy, 2014, 124 (C): 283–297 Doesn’t address economic (dis)benefits
162. Weinhold B. 2012. The Future of Fracking: New Rules Target Air Emissions for Cleaner Natural Gas Production. Environ Health Perspect 120:a272–a279 Discussion of revised regulation
163. Wennberg - On the Sources of Methane to the Los Angeles Atmosphere. Environ. Sci. Technol., 2012, 46 (17), pp 9282–9289 Fossil fuel emissions—no distinction of HVHF
164. Wigley TML. Coal to gas: the influence of methane leakage. Climatic Change 2011, 108: 601. doi:10.1007/s10584-011-0217-3 Theoretical, letter
165. Williams JF, Lundy JB, Chung KK, Chan RK, King BT, Renz EM, et al. 2014. Traumatic Injuries Incidental to Hydraulic Well Fracturing: A Case Series. Journal of Burn Care & Research 1; doi:10.1097/BCR.0000000000000219 Not available-relates to occupational burn injuries
166. Witter RZ Tenney L Clark S Newman LS. Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations. 2014 57 (7):847–856. American Journal of Industrial Medicine Volume 57, Issue 7, pages 847–856 Review of oil and gas industry-hvhf papers already identified
167. Yacovitch TI et al. Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region. Environ. Sci. Technol., 2015, 49 (13): 7889–7895 Assesses utility of monitoring method—no assessment of overall GHG impact of UNGD
168. Yao Y et al. Understanding variability to reduce the energy and GHG footprints of U.S. ethylene production. Environ. Sci. Technol., 2015, 49 (24): 14704–14716 Ethylene
169. Yao Y, Chen T, Shen SS, Niu Y, DesMarais TL, Linn R, et al. 2015. Malignant human cell transformation of Marcellus Shale gas drilling flow back water. Toxicology and Applied Pharmacology 288:121–30; doi:10.1016/j.taap.2015.07.011 Oil and gas—no distinction of dominant source
170. Yuan B et al. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions. Journal of Geophysical Research: Atmospheres, 2015, 120(12): 6271–6289 Assessment of analytical method
171. Zavala-Araiza D et al. Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites. Environ. Sci. Technol., 2015, 49 (13): 8167–8174 Definition of super emitter
172. Zhang L, Anderson N, Dilmore R, Soeder DJ, Bromhal G. 2014. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-D numerical modeling approach. Environ. Sci. Technol.; doi:10.1021/es501997p Hypothetical: effectiveness of leakage detection
173. Zhang L, Soeder DJ. 2015. Modeling of Methane Migration in Shallow Aquifers from Shale Gas Well Drilling. Ground Water; doi:10.1111/gwat.12361 Hypothetical
174. Zimmerle DJ et al. Methane Emissions from the Natural Gas Transmission and Storage System in the United States Environ. Sci. Technol., 2015, 49 (15), pp 9374–9383 Covers all natural gas—no distinction of dominant source
175. Zou C et al. Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development 2010, 37(6):641–653 Not OECD

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saunders, P.J., McCoy, D., Goldstein, R. et al. A review of the public health impacts of unconventional natural gas development. Environ Geochem Health 40, 1–57 (2018). https://doi.org/10.1007/s10653-016-9898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9898-x

Keywords

  • Hydraulic fracturing
  • Fracking
  • Shale gas
  • Public health