Environmental Geochemistry and Health

, Volume 40, Issue 5, pp 1713–1724 | Cite as

DNA damage in oral epithelial cells of individuals chronically exposed to indoor radon (222Rn) in a hydrothermal area

  • Diana Paula Silva LinharesEmail author
  • Patrícia Ventura Garcia
  • Catarina Silva
  • Joana Barroso
  • Nadya Kazachkova
  • Rui Pereira
  • Manuela Lima
  • Ricardo Camarinho
  • Teresa Ferreira
  • Armindo dos Santos Rodrigues
Original Paper


Hydrothermal areas are potentially hazardous to humans as volcanic gases such as radon (222Rn) are continuously released from soil diffuse degassing. Exposure to radon is estimated to be the second leading cause of lung cancer, but little is known about radon health-associated risks in hydrothermal regions. This cross-sectional study was designed to evaluate the DNA damage in the buccal epithelial cells of individuals chronically exposed to indoor radon in a volcanic area (Furnas volcano, Azores, Portugal) with a hydrothermal system. Buccal epithelial cells were collected from 33 individuals inhabiting the hydrothermal area (Ribeira Quente village) and from 49 individuals inhabiting a non-hydrothermal area (Ponta Delgada city). Indoor radon was measured with Ramon 2.2 detectors. Chromosome damage was measured by micronucleus cytome assay, and RAPD-PCR was used as a complementary tool to evaluate DNA damage, using three 10-mer primers (D11, F1 and F12). Indoor radon concentration correlated positively with the frequency of micronucleated cells (r s = 0.325, p = 0.003). Exposure to radon is a risk factor for the occurrence micronucleated cells in the inhabitants of the hydrothermal area (RR = 1.71; 95% CI, 1.2–2.4; p = 0.003). One RAPD-PCR primer (F12) produced differences in the banding pattern, a fact that can indicate its potential for detecting radon-induced specific genomic alterations. The observed association between chronic exposure to indoor radon and the occurrence of chromosome damage in human oral epithelial cells evidences the usefulness of biological surveillance to assess mutations involved in pre-carcinogenesis in hydrothermal areas, reinforcing the need for further studies with human populations living in these areas.


Genotoxicity Micronuclei RAPD-PCR Biomonitoring 



The authors thank Fátima Viveiros and Paulo Melo for their support in field and laboratory work. Diana Linhares and Nadya Kazachkova were supported, respectively, by Ph.D. and postdoc fellowships from the Fundo Regional da Ciência (Regional Government of the Azores) (PROEMPREGO Programme) (M3.1.2/F/019/2011 and M3.1.7/F/002/2008). The authors also thank the financial support of BioAir-Biomonitoring air pollution: development of an integrated system (M2.1.2/F/00872011) from Fundo Regional da Ciência (Regional Government of the Azores) (PROEMPREGO Programme).

Supplementary material

10653_2016_9893_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)


  1. Agarwal, P., Vinuth, D. P., Harana, S., Thippanna, C. K., Naresh, N., & Moger, G. (2015). Genotoxic and cytotoxic effects of X-ray on buccal epithelial cells following panoramic radiography: A pediatric study. Journal of Cytology, 32(2), 102–106.CrossRefGoogle Scholar
  2. Ahmad, K. K., Mustafa, S. K., & Karim, J. K. (2015). Prevalence of micronucleated cell in buccal smears among smokers and non-smokers. International Journal of Advanced Research, 3(4), 972–977.Google Scholar
  3. Al-Zoughool, M., & Krewski, D. (2009). Health effects of radon: A review of the literature. International Journal of Radiation Biology, 85, 57–69.CrossRefGoogle Scholar
  4. Amaral, A., Rodrigues, V., Oliveira, J., Pinto, C., Carneiro, V., Sanbento, R., et al. (2006). Chronic exposure to volcanic environments and cancer incidence in the Azores, Portugal. Science of the Total Environment, 367, 123–128.CrossRefGoogle Scholar
  5. Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2–3), 76–102.CrossRefGoogle Scholar
  6. Auxier, J. A. (1976). Respiratory exposure in buildings due to radon progeny. Health Physics, 31, 119–125.CrossRefGoogle Scholar
  7. Axelson, O., Edling, C., & Kling, H. (1979). Lung cancer and residency: A case referent study on the possible impact of exposure to radon and its daughters in dwellings. Scandinavian Journal of Work, Environment & Health, 5, 10–15.CrossRefGoogle Scholar
  8. Baxter, P. J., Baubron, J. C., & Coutinho, R. (1999). Health hazards and disaster potential of ground gas emissions at Furnas volcano, Sao Miguel, Azores. Journal of Volcanology and Geothermal Research, 92, 95–106.CrossRefGoogle Scholar
  9. Bloching, M., Hofmann, A., Lautenschalager, C. H., Berghaus, A., & Grummt, T. (2000). Exfoliative cytology of normal buccal mucosa to predict the relative risk of cancer in the upper aerodigestive tract using the MN-assay. Oral Oncology, 36, 550–555.CrossRefGoogle Scholar
  10. Bolognesi, C., Knasmueller, S., Nersesyan, P., Thomas, P., & Fenech, M. (2013). The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay: An update and expanded photogallery. Mutation Research-Reviews in Mutation Research, 753(2), 100–113.CrossRefGoogle Scholar
  11. Bolognesi, C., Roggieri, P., Ropolo, P., Thomas, P., Hor, M., & Fenech, M., et al. (2015). Buccal micronucleus cytome assay: Results of an intra- and inter-laboratory scoring comparison. Mutagenesis, 30(4), 545–555.CrossRefGoogle Scholar
  12. Bonassi, S., Coskun, E., Ceppi, M., Lando, C., Bolognesi, C., Burgaz, S., et al. (2011). The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol. Mutation Research, 728(3), 88–97.CrossRefGoogle Scholar
  13. Bruschweiler, E. D., Hopf, N. B., Wild, P., Huynh, C. K., Fenech, M., Thomas, P., et al. (2014). Workers exposed to wood dust have an increased micronucleus frequency in nasal and buccal cells: Results from a pilot study. Mutagenesis, 29(3), 201–207.CrossRefGoogle Scholar
  14. Bukvic, N., Gentile, M., Susca, F., Fanelli, M., Serio, G., Buonadonna, L., et al. (2001). Sex chromosome loss, micronuclei, sister chromatid exchange and aging: A study including 16 centenarians. Mutation Research, 498, 159–167.CrossRefGoogle Scholar
  15. Burton, M. R., Sawyer, G. M., & Granieri, D. (2013). Deep carbon emissions from volcanoes. Reviews in Mineralogy and Geochemistry, 75(1), 323–354.CrossRefGoogle Scholar
  16. Camarinho, R., Garcia, P. V., & Rodrigues, A. S. (2013). Chronic exposure to volcanogenic air pollution as cause of lung injury. Environmental Pollution, 181C, 24–30.CrossRefGoogle Scholar
  17. Çelik, A., Yildirim, S., Ekinci, S. Y., & Taşdelen, B. (2013). Bio-monitoring for the genotoxic assessment in road construction workers as determined by the buccal micronucleus cytome assay. Ecotoxicology and Environment Safety, 92, 265–270.CrossRefGoogle Scholar
  18. Committee on Health Risks of Exposure to Radon, National Research Council. (1999). Health effects of exposure to radon. Washington, DC: The National Academies Press.Google Scholar
  19. Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., Bochicchio, F., et al. (2005). Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. British Medical Journal, 330, 223–226.CrossRefGoogle Scholar
  20. De Wolf, H., Blust, R., & Backeljau, T. (2004). The use of RAPD in ecotoxicology. Mutation Research, 566(3), 249–262.CrossRefGoogle Scholar
  21. Decreto Legislativo Regional No. 16/2009/A de 13 de Outubro—Diário da República No. 198 1ª série.Google Scholar
  22. Dionis, S. M., Melián, G., Rodríguez, F., Hernández, P. A., Padrón, E., Pérez, N. M., et al. (2015). Diffuse volcanic gas emission and thermal energy release from the summit crater of Pico do Fogo, Cape Verde. Bulletin of Volcanology, 77, 10.CrossRefGoogle Scholar
  23. Durand, M., & Scott, B. J. (2005). Geothermal ground gas emissions and indoor air pollution in Rotorua, New Zealand. Science of the Total Environment, 345, 69–80.CrossRefGoogle Scholar
  24. Fenech, M., Holland, N., Zeiger, E., Chang, W. P., Burgaz, S., Thomas, P., et al. (2011). The HUMN and HUMNxL international collaboration projects on human micronucleus assays in lymphocytes and buccal cells—past, present and future. Mutagenesis, 26(1), 239–245.CrossRefGoogle Scholar
  25. Ferreira, T., Gaspar, J. L., Viveiros, F., Marcos, M., Faria, C., & Sousa, F. (2005). Monitoring of fumarole discharge and CO2 soil degassing in the Azores: Contribution to volcanic surveillance and public health risk assessment. Annals of Geophysics, 48, 4–5.Google Scholar
  26. Ferreira, T., & Oskarsson, N. (1999). Chemical and isotopic composition of fumarole discharge of Furnas caldera. Journal of Volcanology and Geothermal Research, 92, 169–179.CrossRefGoogle Scholar
  27. Garcia, P. V., Linhares, D., Amaral, A. F. S., & Rodrigues, A. S. (2012). Exposure of thermoelectric power-plant workers to volatile organic compounds from fuel oil: Genotoxic and cytotoxic effects in buccal epithelial cells. Mutation Research, 747, 197–201.CrossRefGoogle Scholar
  28. Gonsebatt, M. E., Vega, L., Salazar, A. M., Montero, R., Guzmán, P., Blas, J., et al. (1997). Cytogenic effects in human exposure to arsenic. Mutation Research, 386, 219–228.CrossRefGoogle Scholar
  29. Grattan, J. P., Durand, M., & Taylor, S. (2003). Illness and elevated human mortality coincident with volcanic eruptions. In C. Oppenheimer, J. Pyle, & J. Barclay (Eds.), Volcanic degassing (Vol. 213, pp. 401–414). London: Special Publication-Geological Society.Google Scholar
  30. GT-Analytic Keg. (2003). Ramon 2.2 radon monitor manual. GT-Analytic KEG, Austria, 5p.Google Scholar
  31. Guo, X., Heflich, R. H., Dial, S. L., Ritcher, P. A., Moore, M. M., & Mei, N. (2016). Quantitative analysis of the relative mutagenicity of five chemical constituents of tobacco smoke in the mouse lymphoma assay. Mutagenesis, 31(3), 287–296.CrossRefGoogle Scholar
  32. Hallare, A. V., Gervasio, M. K. R., Gervasio, P. L. G., & Accio-Calro, P. J. B. (2009). Monitoring genotoxicity among gasoline station attendants and traffic enforcers in the City of Manila using the micronucleus assay with exfoliated epithelial cells. Environmental and Monitoring Assessment, 156, 331–341.CrossRefGoogle Scholar
  33. Hipólito, A., Madeira, J., Carmo, R., & Gaspar, J. L. (2013). Neotectonics of Graciosa island (Azores): A contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting. Annals of Geophysics, Special volume: “Earthquake Geology: Science, Society and Critical Facilities”, 56, 6.Google Scholar
  34. Ishikawa, H., Tian, Y., & Yamauchi, T. (2003). Influence of gender, age and lifestyle factors on micronuclei frequency in healthy Japanese populations. Journal of Occupational Health, 45(3), 179–181.CrossRefGoogle Scholar
  35. Jin, X., Chen, Q., Tang, S. S., Zou, J. J., Chen, K. P., Zang, T., et al. (2009). Investigation of qinocetone-induced genotoxicity in HepG2 cells using comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicology in Vitro, 23, 1209–1214.CrossRefGoogle Scholar
  36. Kristbjornsdottir, A., & Rafnsson, V. (2015). Cancer mortality and other causes of death in users of geothermal hot water. Acta Oncologica, 2015(54), 115–123.CrossRefGoogle Scholar
  37. Kumar, N. S., & Gurusubramanian, G. (2011). Random amplified polymorphic DNA (RAPD) markers and its applications. Science Vision, 11(3), 116–124.Google Scholar
  38. Linhares, D., Garcia, P. V., Viveiros, F., Ferreira, T., Rodrigues, A. (2015). Air pollution by hydrothermal volcanism and human pulmonary function. Biomed Research International. doi: 10.1155/2015/326794.Google Scholar
  39. Lourenço, N., Luís, J., & Miranda, J. M. (1997). Azores triple junction bathymetry. Map edited by Science Faculty, Lisbon University and Algarve University, 1 Sheet.Google Scholar
  40. Mahimkar, M. B., Saman, T. A., Kannan, S., & Patilet, T. (2010). Influence of genetic polymorphisms on frequency of micronucleated buccal epithelial cells in leukoplakia patients. Oral Oncology, 46, 761–766.CrossRefGoogle Scholar
  41. Nersesyan, A., Muradyan, R., Kundi, M., & Knasmueller, S. (2011). Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: A comparative study with different cigarette types. Mutagenesis, 26, 295–301.CrossRefGoogle Scholar
  42. Robertson, A., Allen, J., Laney, R., & Curnow, A. (2013). The cellular and molecular carcinogenic effects of radon exposure: A review. International Journal of Molecular Sciences, 14, 14024–14063.CrossRefGoogle Scholar
  43. Rodrigues, A., Arruda, M., & Garcia, P. (2012). Evidence of DNA damage in humans inhabiting a volcanically active environment: A useful tool for biomonitoring. Environment International, 49, 51–56.CrossRefGoogle Scholar
  44. Russo, M., Malandrino, P., Addario, W. P., Dardanoni, G., Vigneri, P., Pellegriti, G., et al. (2015). Several site-specific cancers are increased in the volcanic area in Sicily. Anticancer Research, 35(7), 3995–4001.Google Scholar
  45. Schmidt, A. (2015). Volcanic gas and aerosol hazards from a future Laki-type eruption in Iceland. In J. F. S. Papale (Ed.), Volcanic Hazards, Risks and Disasters (pp. 377–397). Boston: Elsevier.CrossRefGoogle Scholar
  46. Sethi, T. K., El-Ghamry, M. N., & Kloecker, G. H. (2012). Radon and lung cancer. Clinical Advances in Hematology & Oncology, 10(3), 157–164.Google Scholar
  47. Silva, C. (2013). Estudo da desgaseificação difusa de 222Rn: Implicações e termos de monitorização sismovulcânica, recursos geotérmicos e saúde pública. Departamento de Geociências. Universidade dos Açores.Google Scholar
  48. Silva, C., Ferreira, T., Viveiros, F., & Allard, P. (2014). Monitorização dos teores de radão (222Rn) no ar interior de edifícios das freguesias das Furnas e Ribeira Quente (Vulcão das Furnas, Açores): avaliação do risco para a saúde pública. Comunicações Geológicas, 101, Especial II, pp. 927–931. ISNN: 0873-948X; e-ISSN: 1647-581X.Google Scholar
  49. Silva, C., Ferreira, T., Viveiros, F., & Allard, P. (2015a). Soil radon (222Rn) monitoring at Furnas Volcano (São Miguel, Azores): Applications and challenges. The European Physical Journal-Special Topics, 224, 659–686.CrossRefGoogle Scholar
  50. Silva, C., Viveiros, F., Ferreira, T., Gaspar, J. L., & Allard, P. (2015b). Diffuse soil emanations of radon and hazard implications at Furnas Volcano, São Miguel Island (Azores). In J. L. Gaspar, J. E. Guest, A. M. Duncan, F. J. A. S. Barriga, & D. K. Chester (Eds.), Volcanic geology of S. Miguel Island (Azores archipelago) (Vol. 44, pp. 197–211). London: Geological Society, Memoirs.Google Scholar
  51. Stich, H. F., San, R. H. C., & Rosin, M. P. (1983). Adaptation of the DNA-repair and micronucleus tests to human cell suspensions and exfoliated cells. Annals of the New York Academy of Sciences, 407, 93–105.CrossRefGoogle Scholar
  52. Thomas, P., Holland, N., Bolognesi, C., Volders, M. K., Bonassi, S., Zeiger, E., et al. (2009). Buccal micronucleus cytome assay. Nature Protocols, 4, 825–837.CrossRefGoogle Scholar
  53. Tolbert, P. E., Shy, C. M., & Allen, J. W. (1991). Micronucleus and other nuclear anomalies in buccal smears: A field test in snuff users. American Journal of Epidemiology, 134, 840–850.CrossRefGoogle Scholar
  54. Tolbert, P. E., Shy, C. M., & Allen, J. W. (1992). Micronucleus and other nuclear anomalies in buccal smears: Methods development. Mutation Research, 271, 69–77.CrossRefGoogle Scholar
  55. Turner, M. C., Krewski, D., Chen, Y., Arden Pope, C., III, Susan Gapstur, S., & Thu, M. J. (2011). Radon and lung cancer in the American Cancer Society Cohort. Cancer Epidemiology, Biomarkers and Prevention, 20, 438–448.CrossRefGoogle Scholar
  56. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2000). Report of the United Nations Scientific Committee on the effects of atomic radiation to the general assembly. New York, NY: United Nations.Google Scholar
  57. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2012). Biological mechanisms of radiation actions at low doses. A white paper to guide the scientific committee’s future programme of work. New York, NY: United Nations.Google Scholar
  58. Viveiros, F. (2010). Soil C O2 flux variation at Furnas Volcano (S. Miguel Island, Azores). Tese de doutoramento no ramo de Geologia, especialidade de Vulcanologia, Universidade dos Açores.Google Scholar
  59. Viveiros, F., Cardellini, C., Ferreira, T., & Silva, C. (2012). Contribution of CO2 emitted to the atmosphere by diffuse degassing from volcanoes: The Furnas Volcano case study. International Journal of Global Warming, 4(3–4), 287–304.CrossRefGoogle Scholar
  60. Viveiros, F., Cardelllini, C., Ferreira, T., Caliro, S., Chiodini, G., & Silva, C. (2010). Soil CO2 emissions at Furnas Volcano, São Miguel Island, Azores archipelago: Volcano monitoring perspectives, geomorphologic studies, and land use planning application. Journal of Geophysical Research, 115(B12208), 1–17.Google Scholar
  61. Viveiros, F., Gaspar, J. L., Ferreira, T., Silva, C., Marcos, M., & Hipólito, A. (2015). Mapping of soil CO2 diffuse degassing at São Miguel Island and its public health implications. Geological Society, London, Memoirs, 44(1), 185–195.CrossRefGoogle Scholar
  62. Weinstein, P., Horwell, C. J., & Cook, A. (2013). Volcanic emissions and health. In O. Selinus et al. (Eds.), Essentials of medical geology (pp. 217–238). Springer: Netherlands.Google Scholar
  63. World Health Organization (WHO). (2009). In H. Zeeb & F. Shannoun (Eds.), WHO handbook on indoor radon, a public health perspective (3rd ed., pp. 94). World Health Organization.Google Scholar
  64. World Health Organization (WHO). (2010). WHO guidelines for indoor air quality: Selected pollutants. Geneva: World Health Organization (WHO).Google Scholar
  65. Yu, K. N., Lau, B. M. F., & Nikezic, D. (2006). Assessment of environmental radon hazard using human respiratory tract models. Journal of Hazardous Materials, 132, 98–110.CrossRefGoogle Scholar
  66. Zölzer, F., Havránková, R., Skalická, Z. F., Rössnerová, A., & Šrám, R. J. (2015). Analysis of genetic damage in lymphocytes of former uranium processing workers. Cytogenetic and Genome Research, 147, 17–23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Diana Paula Silva Linhares
    • 1
    • 4
    Email author
  • Patrícia Ventura Garcia
    • 1
    • 2
  • Catarina Silva
    • 4
    • 5
  • Joana Barroso
    • 1
  • Nadya Kazachkova
    • 1
    • 6
    • 7
  • Rui Pereira
    • 1
  • Manuela Lima
    • 1
    • 6
    • 7
  • Ricardo Camarinho
    • 1
  • Teresa Ferreira
    • 3
    • 4
  • Armindo dos Santos Rodrigues
    • 1
    • 4
  1. 1.Department of BiologyUniversity of the AzoresPonta DelgadaPortugal
  2. 2.cE3c, Centre for Ecology Evolution and Environmental Changes and Azorean Biodiversity GroupUniversity of the AzoresPonta DelgadaPortugal
  3. 3.Department of GeosciencesUniversity of the AzoresPonta DelgadaPortugal
  4. 4.CVARG, Center for Volcanology and Geological Risks AssessmentUniversity of the AzoresPonta DelgadaPortugal
  5. 5.CIVISA, Center for Information and Seismovolcanic Surveillance of the AzoresUniversity of the AzoresPonta DelgadaPortugal
  6. 6.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  7. 7.Institute for Molecular and Cell Biology (IBMC)University of PortoPortoPortugal

Personalised recommendations