Skip to main content

Advertisement

Log in

Geochemistry of vanadium (V) in Chinese coals

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agency for Toxic Substances and Disease Registry. (1990). Toxicological Profile for Vanadium. Prepared by Clement Associates, Inc., under Contract 205-88-0608. Agency for Toxic Substances and Disease Registry, U.S. Public Health Service, Atlanta, GA.

  • Bai, X., Li, W., Chen, Y., & Jiang, Y. (2007). The general distributions of trace elements in Chinese coals. Coal Quality Technology, 1, 1–4. (in Chinese with English abstract).

    Google Scholar 

  • Bin, Z. Y. (2006). Progress of the research on extraction of vanadium pentoxide from stone coal and the market of the V2O5. Hunan Nonferrous Metals, 22, 16–22. (in Chinese with English abstract).

    Google Scholar 

  • Bohor, B. F., & Triplehorn, D. M. (1993). Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geological Society of America, Special Paper, 285, 1–44.

    Article  Google Scholar 

  • British Petroleum (2015a). British Petroleum Statistical Review of World Energy. London.

  • British Petroleum (2015b). British Petroleum Energy Outlook 2035. London.

  • Breit, G. N., & Wanty, R. B. (1991). Vanadium accumulation in carbonaceous rocks: A review of Geochemical Controls during deposition and diagenesis. Chemical Geology, 91, 83–97.

    Article  CAS  Google Scholar 

  • Bunt, J. R., & Waanders, F. B. (2010). Trace element behaviour in the Sasol-Lurgi fixed-bed dry-bottom gasifier. Part 3-The non-volatile elements: Ba Co, Cr, Mn, and V. Fuel, 89, 537–548.

    Article  CAS  Google Scholar 

  • Cahill, R. A., Kuhn, J. K., Dreher, G. B., Ruch, R. R., Gluskoter, J. H., & Miller, W. G. (1976). Occurrence and distribution of trace elements in coals. Division of Fuel Chemistry, American Chemical Society, 21(7), 90–93.

    Google Scholar 

  • Chandler, H. (1998). Metallurgy for the non-metallurgist (pp. 6–7). New York: ASM International.

    Google Scholar 

  • Chen, Y., Liu, G., Gong, Y., Yang, J., Qi, C., & Gao, L. (2007). Release and enrichment of 44 elements during coal pyrolysis of Yima coal, China. Journal of Analytical and Applied Pyrolysis, 80, 283–288.

    Article  CAS  Google Scholar 

  • Chen, J., Liu, G., Jiang, M., Chou, C.-L., Li, H., Wu, B., et al. (2011). Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China. International Journal of Coal Geology, 88, 41–54.

    Article  CAS  Google Scholar 

  • Cheng, M., Hu, X., Sun, J., Xu, J., Bao, Z., & Bao, J. (2012). Overview on the Cambrian blank shale-hosted vanadium deposit in Hunan. Contributions to Geology and Mineral Resources Research, 27, 410–420. (in Chinese with English abstract).

    Google Scholar 

  • Cheng, W., Yang, R., Zhang, Q., Cui, Y., & Gao, J. (2013). Distribution characteristics, occurrence modes and controlling factors of trace elements in late Permian coal from Bijie City, Guizhou Province. Journal of China Coal Society, 38, 103–113. (in Chinese with English abstract).

    CAS  Google Scholar 

  • China Statistical Yearbook. (2014). National Bureau of Statistics PRC. Beijing: China Statistics Press. (Chinese-English Edition)..

    Google Scholar 

  • China Statistical Yearbook. (2015). National Bureau of Statistics PRC. Beijing: China Statistics Press. (Chinese-English Edition).

    Google Scholar 

  • Córdoba, P., Font, O., Izquierdo, M., Querol, X., Leiva, C., López-Antón, M. A., et al. (2012). The retention capacity for trace elements by the flue gas desulphurisation system under operational conditions of a co-combustion power plant. Fuel, 102, 773–788.

    Article  CAS  Google Scholar 

  • Dai, S., Chou, C.-L., Yue, M., Luo, K., & Ren, D. (2005a). Mineralogy and geochemistry of a late Permian coal in the Dafang Coalfield, Guizhou, China: influence from siliceous and iron-rich calcic hydrothermal fluids. International Journal of Coal Geology, 61, 241–258.

    Article  CAS  Google Scholar 

  • Dai, S., Han, D., & Chou, C.-L. (2006). Petrography and geochemistry of the Middle Devonian coal from Luquan, Yunnan Province, China. Fuel, 85, 456–464.

    Article  CAS  Google Scholar 

  • Dai, S., Hower, J. C., Ward, C. R., Guo, W., Song, H., O’Keefe, J. M. K., et al. (2015a). Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. International Journal of Coal Geology, 144–145, 23–47.

    Article  CAS  Google Scholar 

  • Dai, S., Jiang, Y., Ward, C. R., Gu, L., Seredin, V. V., Liu, H., et al. (2012a). Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40.

    Article  CAS  Google Scholar 

  • Dai, S., Li, D., Chou, C.-L., Zhao, L., Zhang, Y., Ren, D., et al. (2008a). Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. International Journal of Coal Geology, 74, 185–202.

    Article  CAS  Google Scholar 

  • Dai, S., Li, T., Seredin, V. V., Ward, C. R., Hower, J. C., Zhou, Y., et al. (2014a). Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 121, 53–78.

    Article  CAS  Google Scholar 

  • Dai, S., Liu, J., Ward, C. R., Hower, J. C., Xie, P., Jiang, Y., et al. (2015b). Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geology Reviews, 71, 318–349.

    Article  Google Scholar 

  • Dai, S., Luo, Y., Seredin, V. V., Ward, C. R., Hower, J. C., Zhao, L., et al. (2014b). Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. International Journal of Coal Geology, 122, 110–128.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Chou, C.-L., Finkelman, R. B., Seredin, V. V., & Zhou, Y. (2012b). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, 3–21.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Hou, X., & Shao, L. (2003). Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. International Journal of Coal Geology, 55, 117–138.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Tang, Y., Yue, M., & Hao, L. M. (2005b). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. International Journal of Coal Geology, 61, 119–137.

    Article  CAS  Google Scholar 

  • Dai, S., Ren, D., Zhou, Y., Chou, C.-L., Wang, X., Zhao, L., et al. (2008b). Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chemical Geology, 255, 182–194.

    Article  CAS  Google Scholar 

  • Dai, S., Seredin, V. V., Ward, C. R., Hower, J. C., Xing, Y., Zhang, W., et al. (2015c). Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Mineralium Deposita, 50, 159–186.

    Article  CAS  Google Scholar 

  • Dai, S., Tian, L., Chou, C.-L., Zhou, Y., Zhang, M., Zhao, L., et al. (2008c). Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite. International Journal of Coal Geology, 76, 318–327.

    Article  CAS  Google Scholar 

  • Dai, S., Wang, X., Chen, W., Li, D., Chou, C.-L., Zhou, Y., et al. (2010a). A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs. International Journal of Coal Geology, 83, 430–445.

    Article  CAS  Google Scholar 

  • Dai, S., Wang, X., Seredin, V. V., Hower, J. C., Ward, C. R., O’Keefe, J. M. K., et al. (2012c). Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90, 72–99.

    Article  CAS  Google Scholar 

  • Dai, S., Wang, P., Ward, C. R., Tang, Y., Song, X., Jiang, J., et al. (2015d). Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, southwestern China: Key role of N2–CO2-mixed hydrothermal solutions. International Journal of Coal Geology, 152, 19–46.

    Article  CAS  Google Scholar 

  • Dai, S., Wang, X., Zhou, Y., Hower, J. C., Li, D., Chen, W., et al. (2011). Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 282, 29–44.

    Article  CAS  Google Scholar 

  • Dai, S., Yang, J., Ward, C. R., Hower, J. C., Liu, H., Garrison, T. M., et al. (2015e). Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the yili basin, xinjiang, northwestern china. Ore Geology Reviews, 70, 1–30.

    Article  Google Scholar 

  • Dai, S., Zhang, W., Seredin, V. V., Ward, C. R., Hower, J. C., Song, W., et al. (2013a). Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. International Journal of Coal Geology, 109, 77–100.

    Article  CAS  Google Scholar 

  • Dai, S., Zhang, W., Ward, C., Seredin, V. V., Hower, J. C., Li, X., et al. (2013b). Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. International Journal of Coal Geology, 105, 60–84.

    Article  CAS  Google Scholar 

  • Dai, S., Zhao, L., Peng, S., Chou, C., Wang, X., Zhang, Y., et al. (2010b). Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. International Journal of Coal Geology, 81, 320–332.

    Article  CAS  Google Scholar 

  • Dai, S., Zhou, Y., Ren, D., Wang, X., Li, D., & Zhao, L. (2007). Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southwestern China. Science in China, Series D: Earth Sciences, 50(5), 678–688.

    Article  CAS  Google Scholar 

  • Dai, S., Zou, J., Jiang, Y., Ward, C. R., Wang, X., Li, T., et al. (2012d). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94, 250–270.

    Article  CAS  Google Scholar 

  • Ding, Z., Zheng, B., & Zhuang, M. (2005). The mode of occurrence of trace elements in coals from arsenosis-affected areas, Guizhou province. Acta Geologica Sinica-English Edition, 25, 357–362. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Du, G., Zhuang, X., Querol, X., Izquierdo, M., Alastuey, A., Moreno, T., et al. (2009). Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield, Inner Mongolia, northeastern China. International Journal of Coal Geology, 78, 16–26.

    Article  CAS  Google Scholar 

  • Duan, L., Tian, Q., & Guo, X. (2006). Review on production and utilization of vanadium resources in China. Hunan Nonferrous Metals, 22, 17–20. (in Chinese with English abstract).

    Google Scholar 

  • Evangelou, A. M. (2002). Vanadium in cancer treatment. Critical reviews in Oncology/Hematology, 42, 249–265.

    Article  Google Scholar 

  • Fang, T., Liu, G., Zhou, C., Sun, R., Chen, J., & Wu, D. (2014). Lead in Chinese coals: Distribution, modes of occurrence, and environmental effects. Environmental Geochemistry and Health, 36, 563–581.

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1993). Trace and minor elements in coal. New York: Plenum Press.

    Book  Google Scholar 

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39, 21–23.

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1995). Environmental aspects of trace elements of coal. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Finkelman, R. B., Palmer, C. A., Krasnow, M. R., Aruscavage, P. J., Sellars, G. A., & Dulong, F. T. (1990). Combustion and leaching behavior of elements in the Argonne premium coal samples. Energy & Fuels, 4, 755–766.

    Article  CAS  Google Scholar 

  • Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C. R., López-Soler, Á., et al. (2007). Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 139, 413–423.

    Article  CAS  Google Scholar 

  • Frandsen, F., Damjohansen, K., & Rasmussen, P. (1994). Trace-elements from combustion and gasification of coal—An equilibrium approach. Progress in Energy and Combustion Science, 20, 115–138.

    Article  CAS  Google Scholar 

  • Fu, X., Wang, J., Tan, F., Feng, X., & Zeng, S. (2013). Minerals and potentially hazardous trace elements in the Late Triassic coals from the Qiangtang Basin, China. International Journal of Coal Geology, 116–117, 93–105.

    Article  CAS  Google Scholar 

  • Geboy, N. J., Engle, M. A., & Hower, J. C. (2013). Whole-coal versus ash basis in coal geochemistry: A mathematical approach to consistent interpretations. International Journal of Coal Geology, 113, 41–49.

    Article  CAS  Google Scholar 

  • Given, P. H., & Miller, R. N. (1987). The ASSOCIATION of major, minor and trace inorganic elements with lignites. 3. Trace elements in 4 lignites and general discussion of all data from this study. Geochimica et Cosmochimica Acta, 51, 1843–1853.

    Article  CAS  Google Scholar 

  • He, D., Feng, Q., Zhang, G., Ou, L., & Lu, Y. (2007). An environmentally-friendly technology of vanadium extraction from stone coal. Minerals Engineering, 20, 1184–1186.

    Article  CAS  Google Scholar 

  • Hope, B. K. (2008). A dynamic model for the global cycling of anthropogenic vanadium. Global Biogeochemical Cycles, 22, GB4021.

    Article  CAS  Google Scholar 

  • Imtiaz, M., Rizwan, M. S., Xiong, S., Li, H., Ashraf, M., Shahzad, S. M., et al. (2015). Vanadium, recent advancements and research prospects: A review. Environment International, 80, 79–88.

    Article  CAS  Google Scholar 

  • Jiang, Y., Dai, S., Wang, X., Zhao, L., Zhou, G., Zhang, L., et al. (2011). Geochemical characteristic study on high and low sulfur coal seam sections in Jining, Shandong. Coal Geology of China, 23, 1–10. (in Chinese with English abstract).

    Google Scholar 

  • Jiang, Z., Tian, J., Chen, G., Li, X., & Zhang, M. (2007). Sedimentary characteristics of the Upper Triassic in western Sichuan foreland basin. Palaeogeogr, 9, 143–154. (in Chinese with English abstract).

    Google Scholar 

  • Jiang, Y., Yue, W., & Ye, Z. (1994). Characteristics, sedimentary environment and origin of the lower Cambrian stone-like coal in southern China. Coal Geology of China, 6, 26–31. (in Chinese with English abstract).

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.

    Article  CAS  Google Scholar 

  • Kong, H., Zeng, R., Zhuang, X., & Xu, W. (2001). Study of trace elements of coal in Beipiao district, Liaoning province. Geoscience, 15, 415–420. (in Chinese with English abstract).

    Google Scholar 

  • Kortenski, J., & Sotirov, A. (2002). Trace and major element content and distribution in Neogene lignite from the Sofia Basin, Bulgaria. International Journal of Coal Geology, 52, 63–82.

    Article  CAS  Google Scholar 

  • Levy, B. S., Hoffman, L., & Gottsegan, S. (1984). Boilermakers’ bronchitis. Journal of Occupational Medicine, 26, 567–570.

    Article  CAS  Google Scholar 

  • Lewan, M. D., & Maynard, J. B. (1982). Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 2547–2560.

    Article  CAS  Google Scholar 

  • Li, H., Liu, G., Sun, R., Chen, J., Wu, B., & Chou, C. L. (2013a). Relationships between trace element abundances and depositional environments of coals from the Zhangji coal mine, Anhui Province, China. Energy Exploration & Exploitation, 31, 89–107.

    Article  Google Scholar 

  • Li, J., & Sun, C. (2016). Evaluation of the migration of thallium, cadmium, vanadium, and chromium from a thermal power plant. Environmental Earth Sciences, 75(5), 1–7.

    Google Scholar 

  • Li, W., Tang, Y., Deng, X., Yu, X., & Jiang, S. (2013b). Geochemistry of the trace elements in the high-organic-sulfurcoals from Chenxi coalfield. Journal of China Coal Society, 38, 1227–1233. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Li, W., Xiong, F., & Jiang, N. (1993). Different trace elements among three kinds of high sulphur coal. Analysis and Application of Coal, 1, 7–9. (in Chinese).

    Google Scholar 

  • Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., & Zhou, J. (2012a). Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel, 95, 446–456.

    Article  CAS  Google Scholar 

  • Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N., Zhou, J., et al. (2012b). High quality of Jurassic Coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. International Journal of Coal Geology, 99, 1–15.

    Article  CAS  Google Scholar 

  • Liu, G., Vassilev, S. V., Gao, L., Zheng, L., & Peng, Z. (2005). Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China. Energy Conversion and Management, 46, 2001–2009.

    Article  CAS  Google Scholar 

  • Liu, G., & Yang, P. (1999). Geochemistry of trace elements in Jining coalfield. Geology Geochemistry, 27, 77–82.

    CAS  Google Scholar 

  • Liu, G., Yang, P., Peng, Z., Wang, G., & Cao, Z. (2002). Occurrrence of trace elements in coal of Yanzhou Mining District. Geochimica (Beijing), 31, 85–90.

    CAS  Google Scholar 

  • Liu, D., Yang, Q., Tang, D., Kang, X., & Huang, W. (2001). Geochemistry of sulfur and elements in coals from the Antaibao surface mine, Pingshuo, Shanxi Province, China. International Journal of Coal Geology, 46, 51–64.

    Article  CAS  Google Scholar 

  • Liu, J., Yang, Z., Yan, X., Ji, D., Yang, Y., & Hu, L. (2015). Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel, 156, 190–197.

    Article  CAS  Google Scholar 

  • Liu, G., Zhang, H., Gao, L., Zheng, L., & Peng, Z. (2004). Petrological and mineralogical characterizations and chemical composition of coal ashes from power plants in Yanzhou mining district, China. Fuel Processing Technology, 85, 1635–1646.

    Article  CAS  Google Scholar 

  • Lu, X., Luo, K., Wang, L., & Wang, W. (2003). The Content of trace elements of coals in Weibei area, Shaanxi province. Journal of Changchun University of Science and Technology, 33, 178–182. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Maylotte, D. H., Wong, J., Stpeters, R. L., Lytle, F. W., & Greegor, R. B. (1981). X-ray absorption spectroscopic investigation of trace vanadium sites in coal. Science, 214, 554–556.

    Article  CAS  Google Scholar 

  • Megalovasilis, P., Papastergios, G., & Filippidis, A. (2013). Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece. Environmental Monitoring and Assessment, 185, 6071–6076.

    Article  CAS  Google Scholar 

  • Mejia, J. A., Rodriguez, R., Armienta, A., Mata, E., & Fiorucci, A. (2007). Aquifer vulnerability zoning, an indicator of atmospheric pollutants input? vanadium in the salamanca aquifer, mexico. Water, Air, and Soil pollution, 185(185), 95–100.

    Article  CAS  Google Scholar 

  • Moskalyk, R. R., & Alfantazi, A. M. (2003). Processing of vanadium: A review. Minerals Engineering, 16, 793–805.

    Article  CAS  Google Scholar 

  • National Toxicology Program. (2002). Technical report on the studies of vanadium pentoxide (CAS No. 1314-62-1) in F344/N rats and B6C3F1 mice (inhalation studies). NTP TR 507. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC.

  • Ni, J., Feng, X., & Hong, Y. (1998). The concentrations of trace elements in coal in Guizhou province. Environmental Chemistry, 17, 339–344. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Nielsen, M. T., & Livbjerg, H. (2002). Formation and emission of fine particles from two coal-fired power plants. Combustion Science and Technology, 174, 79–113.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47–49.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pirrone, N. (1998). Emission of vanadium into the atmosphere, in Vanadium in the Environment. In J. O. Nrigau (Ed.), Part 1: Chemistry and biochemistry (pp. 25–36). New York: Wiley.

    Google Scholar 

  • Patterson, B. W., Hansard, S. L., Ammerman, C. B., et al. (1986). Kinetic model of whole-body vanadium metabolism: Studies in sheep. American Journal of Physiology, 251, R325–R332.

    CAS  Google Scholar 

  • Premović, P. I., Nikolić, N. D., Pavlović, M. S., Jovanović, L. S., & Premović, M. P. (1997). Origin of vanadium in coals: parts of the Western Kentucky (USA) No. 9 coal rich in vanadium. Geological Society, London, Special Publications, 125(1), 273–286.

    Article  Google Scholar 

  • Querol, X., Alastuey, A., LopezSoler, A., Plana, F., FernandezTuriel, J. L., Zeng, R., et al. (1997). Geological controls on the mineral matter and trace elements of coals from the Fuxin basin, Liaoning Province, northeast China. International Journal of Coal Geology, 34, 89–109.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Zeng, R., Zhao, J., et al. (1999). Geological controls on the quality of coals from the West Shandong mining district, Eastern China. International Journal of Coal Geology, 42, 63–88.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Zhuang, X., Hower, J. C., Lopez-Soler, A., Plana, F., et al. (2001). Petrology, mineralogy and geochemistry of the Permian and Triassic coals in the Leping area, Jiangxi Province, southeast China. International Journal of Coal Geology, 48, 23–45.

    Article  CAS  Google Scholar 

  • Quinbyhunt, M. S., & Wilde, P. (1994). Thermodynamic zonation in the black shale facies based on iron-manganese vanadium content. Chem Geol., 113, 297–317.

    Article  CAS  Google Scholar 

  • Rehder, D. (1991). The bioinorganic chemistry of vanadium. Angewandie Chemie International Edition, 30, 148–167.

    Article  Google Scholar 

  • Ren, D., Xu, D., & Zhao, F. (2004). A preliminary study on the enrichment mechanism and occurrence of hazardous trace elements in the Tertiary lignite from the Shenbei coalfield, China. International Journal of Coal Geology, 57, 187–196.

    Article  CAS  Google Scholar 

  • Ren, D., Zhao, F., Dai, S., Zhang, J., & Luo, K. (2006). Geochemistry of trace elements in coal. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Ren, D., Zhao, F., Wang, Y., & Yang, S. (1999). Distributions of minor and trace elements in Chinese coals. International Journal of Coal Geology, 40, 109–118.

    Article  CAS  Google Scholar 

  • Rudnick, R., & Gao, S. (2014). Composition of the continental crust. Treatise on Geochemistry, 4, 1–51.

    Google Scholar 

  • Seredin, V. V., Danilcheva, Y. A., Magazina, L. O., & Sharova, I. G. (2006). Ge-bearing coals of the Luzanovka Graben, Pavlovka brown coal deposit, Southern Primorye. Lithology and Mineral Resources, 41, 280–301.

    Article  CAS  Google Scholar 

  • Seredin, V. V., & Finkelman, R. B. (2008). Metalliferous coals: A review of the main genetic and geochemical types. International Journal of Coal Geology, 76(4), 253–289.

    Article  CAS  Google Scholar 

  • Shao, L., Jones, T., Gayer, R., Dai, S., Li, S., Jiang, Y., et al. (2003). Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. International Journal of Coal Geology, 55, 1–26.

    Article  CAS  Google Scholar 

  • Shao, L., Lu, J., Tim, J., Rod, G., Shang, L., Liang, Z., & Zhang, P. (2006). Mineralogy and geochemistry of the high-organic sulphur coals from the carbonate coal measures of the Late Permian in central Guangxi. Journal of China Coal Society, 31, 770–775. (in Chinese with English abstract).

    Google Scholar 

  • Song, D., Qin, Y., Zhang, J., Wang, W., & Zhang, C. (2007). Concentration and distribution of trace elements in some coals from Northern China. International Journal of Coal Geology, 69, 179–191.

    Article  CAS  Google Scholar 

  • Spears, D. A. (2013). The determination of trace element distributions in coals using sequential chemical leaching—a new approach to an old method. Fuel, 114, 31–37.

    Article  CAS  Google Scholar 

  • Sun, Y., Lin, M., Qin, P., Zhao, C., & Jin, K. (2007). Geochemistry of the barkinite liptobiolith (Late Permian) from the Jinshan Mine, Anhui Province, China. Environmental Geochemistry and Health, 29, 33–44.

    Article  CAS  Google Scholar 

  • Sun, R., Liu, G., Zheng, L., & Chou, C.-L. (2010a). Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. International Journal of Coal Geology, 81, 81–96.

    Article  CAS  Google Scholar 

  • Sun, B., Zeng, F., Li, M., & Qi, F. (2010b). Geochemistry characteristics of trace elements & rare earth elements (REEs) of No.8 coal and parting in Malan Coal Mine, Xishan Coalfield. Journal of China Coal Society, 35, 110–116. (in Chinese with English abstract).

    Google Scholar 

  • Swaine, D. J. (1976). Trace elements in coal. In A. E. Tugarinov (Ed.), Recent contributions to geochemistry and analytical chemistry (pp. 539–550). New York: Wiley.

    Google Scholar 

  • Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.

    Google Scholar 

  • Swaine, D. J., & Goodarzi, F. (1995). Environmental aspects of trace elements in coal. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Tang, X., & Huang, W. (2004). Trace elements in Chinese coals. Beijing: The Commercial Press. (in Chinese).

    Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., & Sun, R. (2013a). Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China. Fuel, 107, 315–322.

    Article  CAS  Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., Zhang, H., & Sun, R. (2013b). Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: Potential risks to ecology and children’s health. Chemosphere, 93, 2473–2479.

    Article  CAS  Google Scholar 

  • Tang, Y., Yin, Z., Chang, C.-X., Zhang, Y., Song, H., Wang, S., et al. (2005). Distribution of trace elements in the Kailuan coalfield. Journal of China Coal Society, 30, 80–84. (in Chinese with English abstract).

    Google Scholar 

  • Taylor, S. R., & Mclennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell.

    Google Scholar 

  • Tewalt, S. J., Belkin, H. E., SanFilipo, J. R., Merrill, M. D., Palmer, C. A., Warwick, P. D., Karlsen, A. W., Finkelman, R. B., & Park, A. J., comp. (2010). Chemical analyses in the World Coal Quality Inventory, version 1: U.S. Geological Survey Open-File Report 2010-1196.

  • Tian, H., Lu, L., Hao, J., Gao, J., Cheng, K., Liu, K., et al. (2013). A review of key hazardous trace elements in Chinese Coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy & Fuels, 27, 601–614.

    Article  CAS  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth crust. Geological Society of America Bulletin, 72, 175–192.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (2005). Guidelines for carcinogen risk assessment. Washington, DC: Risk Assessment Forum.

    Google Scholar 

  • Wang, X. (2009). Geochemistry of late triassic coals in the Change mine, Sichuan Basin, southwestern China: Evidence for authigenic lanthanide enrichment. International Journal of Coal Geology, 80, 167–174.

    Article  CAS  Google Scholar 

  • Wang, X., Dai, S., Chou, C.-L., Zhang, M., Wang, J., Song, X., et al. (2012). Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine, Yunnan Province, China: Evidences for the sources of minerals. International Journal of Coal Geology, 96–97, 49–59.

    Article  CAS  Google Scholar 

  • Wang, J., Deng, X., & Kalkreuth, W. (2011). The distribution of trace elements in various peat swamps of the No. 11 coal seam from the Antaibao Mine, Ningwu coalfield, China. Energy Exploration & Exploitation, 29, 517–524.

    Article  Google Scholar 

  • Wang, X., Li, D., Lu, Y., & Zhang, Y. (2007). Geochemistry of Late Triassic coals from the Changhebian mine in Chongqing, China. Coal Geology & Exploration, 35, 4–9.

    Google Scholar 

  • Wang, W., Qin, Y., & Song, D. (2002a). Geochemical features of hazardous elements and cleaning potential of coal from Xinzhouyao coal mine. Journal of China University of Mining & Technology, 31, 68–71. (in Chinese with English abstract).

    Google Scholar 

  • Wang, W., Qin, Y., Song, D., & Fu, X. (2002b). Geochemistry of rare earth elements in the middle and high sulfur coals from North Shanxi Province. Geochimica (Beijing), 31, 564–570.

    CAS  Google Scholar 

  • Wang, Q., Shao, Q., Kang, S., Wang, Z., & Zou, S. (1996). Distribution of 15 trace elements in the combustion of 15 trace elements in the combustion products of coal. Journal of Fuel Chemistry and Technology, 24, 137–142. (in Chinese with English abstract).

    Google Scholar 

  • Wang, M., Xiao, L., Li, Q., Wang, X., & Xiang, X. (2009). Leaching of vanadium from stone coal with sulfuric acid. Rare Metals, 28, 1–4.

    Article  CAS  Google Scholar 

  • Wang, D., & Zhang, Y. (2012). Jurassic Tariqik formation coal geochemical characteristics in Kuqa-Bay Coalfield, Xinjiang. Coal Geology of China, 24, 6–9. (in Chinese with English abstract).

    Google Scholar 

  • Wu, C., Chen, C., & Chen, Q. (1999). The origin and geochemical characteristics of Upper Sinain-Lower Cambrian black shales in western Hunan. Acta Petrologica et Mineralogica, 18, 26–39. (in Chinese with English abstract).

    Google Scholar 

  • Wu, Z., Li, Y., & Zhou, Y. (2004). Geochemical behavior of trace elements in coals in Baishan area, Jilin province. Coal Geology & Exploration, 32, 8–10. (in Chinese with English abstract).

    Google Scholar 

  • Yan, R., Gauthier, D., & Flamant, G. (2001). Volatility and chemistry of trace elements in a coal combustor. Fuel, 80, 2217–2226.

    Article  CAS  Google Scholar 

  • Yang, J. (2006). Concentrations and modes of occurrence of trace elements in the Late Permian coals from the Puan Coalfield, southwestern Guizhou, China. Environmental Geochemistry and Health, 28, 567–576.

    Article  CAS  Google Scholar 

  • Yang, Z. (2009). Occurrence and Abundance of V, Cr, Mo and U in the Late Permian Coals from Yanshan, Yunnan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 28, 268–271. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yang, J. (2011). The periodic law of trace elements in coal—A case study of the 5 coal from the Weibei Coalfield. Science China Earth Sciences, 54, 1542–1550. (in Chinese).

    Article  CAS  Google Scholar 

  • Yang, J., Di, Y., Zhang, W., & Liu, S. (2011). Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili Basin. Journal of China Coal Society, 36, 945–952.

    CAS  Google Scholar 

  • Yang, J., & Li, L. (2007). A preliminary study on the correlations among major elements, trace elements, and parameters o f coal hydrocarbon-generation in low rank coal. Journal of Fuel Chemistry and Technology, 35, 10–15. (in Chinese with English abstract).

    Article  CAS  Google Scholar 

  • Yang, L., Liu, C., & Li, H. (2008). Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine. Coal Geology & Exploration, 36, 10–14. (in Chinese with English abstract).

    CAS  Google Scholar 

  • You, C., & Xu, X. (2010). Coal combustion and its pollution control in China. Energy, 35, 4467–4472.

    Article  CAS  Google Scholar 

  • Zeng, L., Li, Q., & Xiao, L. (2009). Extraction of vanadium from the leach solution of stone coal using ion exchange resin. Hydrometallurgy, 97, 194–197.

    Article  CAS  Google Scholar 

  • Zeng, R., Zhao, J., & Zhuang, X. (1998). Quality of Late Permian coal and its controlling factors in Shuicheng mining district of Liupanshui Area, Guizhou. ACTA Petrologica Sinica, 14, 144–153. (in Chinese with English abstract).

    Google Scholar 

  • Zeng, R., Zhuang, X., Koukouzas, N., & Xu, W. (2005). Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. International Journal of Coal Geology, 61, 87–95.

    Article  CAS  Google Scholar 

  • Zhang, Y., Bao, S., Liu, T., Chen, T., & Huang, J. (2011). The technology of extracting vanadium from stone coal in China: History, current status and future prospects. Hydrometallurgy, 109, 116–124.

    Article  CAS  Google Scholar 

  • Zhang, J., Han, C., & Xu, Y. (2003). The release of the hazardous elements from coal in the initial stage of combustion process. Fuel Processing Technology, 84, 121–133.

    Article  CAS  Google Scholar 

  • Zhang, J., Ren, D., Zheng, C., Zeng, R., Chou, C. L., & Liu, J. (2002). Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. International Journal of Coal Geology, 53, 55–64.

    Article  CAS  Google Scholar 

  • Zhang, J., Ren, D., Zhu, Y., Chou, C. L., Zeng, R., & Zheng, B. (2004a). Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in southwestern Guizhou, China. International Journal of Coal Geology, 57, 49–61.

    Article  CAS  Google Scholar 

  • Zhang, T., Tang, H., & Wu, B. (2010). Sedimentary facies of the Carboniferous system at the north pitching end of the Huayingshan Anticline. Sichuan Geol., 30, 271–274. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhang, J., Zheng, C., Ren, D., Chou, C., Liu, J., Zeng, R., et al. (2004b). Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel, 83, 129–135.

    Article  CAS  Google Scholar 

  • Zhao, F., Peng, S., Tang, Y., & Ren, D. (2005). Occurrence of Fe–Mn–Hg–Zn–Ni–Cr–V and Its Significance in High Organosulfur Coal from Heshan Coalfield. Journal of China University of Mining & Technology, 34, 33–36. (in Chinese with English abstract).

    Google Scholar 

  • Zheng, L., Liu, G., Wang, L., & Chou, C. L. (2008). Composition and quality of coals in the Huaibei Coalfield, Anhui, China. Journal of Geochemical Exploration, 97, 59–68.

    Article  CAS  Google Scholar 

  • Zheng, L., Liu, G., Zhang, H., Gao, L., & Xue, J. (2006). The affinity of associated elements in Permian coals from the Huaibei Coalfield. ACTA Petrologica ET Mineralogica, 25, 243–294. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhou, Y., Bohor, B., & Ren, Y. (2000). Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International Journal of Coal Geology, 44, 305–324.

    Article  CAS  Google Scholar 

  • Zhou, G., Jiang, Y., & Liu, M. (2011). Sapropelic coal petrologic, quality and trace element characteristics in Datun mining area, Xuzhou. Coal Geology of China, 23, 7–9. (in Chinese with English abstract).

    Google Scholar 

  • Zhou, X., Li, C., Li, J., Liu, H., & Wu, S. (2009). Leaching of vanadium from carbonaceous shale. Hydrometallurgy, 99, 97–99.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Wu, D., Fang, T., Wang, R., & Fan, X. (2014). Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan Coalfield in China. Chemosphere, 95, 193–199.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Yan, Z., Fang, T., & Wang, R. (2012). Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel, 97, 644–650.

    Article  CAS  Google Scholar 

  • Zhou, J., Zhuang, X., Alastuey, A., Querol, X., & Li, J. (2010). Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China. International Journal of Coal Geology, 82, 51–67.

    Article  CAS  Google Scholar 

  • Zhu, C., & Li, D. (2009). Occurrences of trace elements in the No. 2 coal of the Changhebian coal mine, Chongqing, China. Bulletin of Mineralogy, Petrology and Geochemistry, 28, 259–263. (in Chinese with English abstract).

    Google Scholar 

  • Zhuang, X., Gong, J., Zeng, R., & Kong, H. (2001). Contrast research on trace elements of late permian and late triassic coals in North-eastern Jiangxi Province. Coal Geology of China, 13, 15–17.

    Google Scholar 

  • Zhuang, X., Querol, X., Alastuey, A., Juan, R., Plana, F., Lopez-Soler, A., et al. (2006). Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field, inner Mongolia, Northeastern China. International Journal of Coal Geology, 66, 119–136.

    Article  CAS  Google Scholar 

  • Zhuang, X., Querol, X., Alastuey, A., Plana, F., Moreno, N., Andres, J. M., et al. (2007). Mineralogy and geochemistry of the coals from the Chongqing and Southeast Hubei coal mining districts, South China. International Journal of Coal Geology, 71, 263–275.

    Article  CAS  Google Scholar 

  • Zhuang, X., Querol, X., Plana, F., Alastuey, A., Lopez-Soler, A., & Wang, H. (2003). Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. International Journal of Coal Geology, 55, 103–115.

    Article  CAS  Google Scholar 

  • Zhuang, X., Querol, X., Zeng, R., Xu, W., Alastuey, A., Lopez-Soler, A., et al. (2000). Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, south China. International Journal of Coal Geology, 45(1), 21–37.

    Article  CAS  Google Scholar 

  • Zhuang, X., Su, S., Xiao, M., Li, J., Alstuey, A., & Querol, X. (2012). Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area, Sichuan Province, China. International Journal of Coal Geology, 94, 271–282.

    Article  CAS  Google Scholar 

  • Zhuang, X., Wang, P., Zhou, J., Li, J., & Amina, (2013). The coal geochemical characteristics of the eastern Junggar Coalfield in Junggar basin, Xinjiang. Xinjiang Geology, 31, 94–98. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhuang, X., Yang, S., Zeng, R., & Xu, W. (1999). Characteristics of trace elements in coals from several main coal districts in china. Geological Science and Technology Information, 18, 63–66. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zhuang, X., Zeng, R., & Xu, W. (1998). Trace elements in 9 coal from Antaibao open pit mine, Pingshuo, Shanxi province. Earth Science Journal of China University of Geosciences, 23, 40–45. (in Chinese with English abstract).

    Google Scholar 

  • Zou, J., Liu, D., Tian, H., Liu, F., Li, T., & Yang, H. (2013). Geochemistry of trace and rare earth elements in the Late Paleozoic Coal from Adaohai Mine, Inner Mongolia. Journal of China Coal Society, 38, 1012–1018. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Zubović, P., Stadnichenko, T., & Sheepey, N. B. (1961). Geochemistry of minor elements in coal of the Northern Great Plains Coal Province. In United States Geological Survey Bulletin, (Vol. 1117-A, p. 57).

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, 2014CB238903), the National Natural Science Foundation of China (Nos. 41173032 and 41373110), and the Anhui Provincial Natural Science Foundation (1608085QD73; 1408085MD69). We acknowledge the editor and reviewers for polishing the language of the paper and for in-depth discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, G., Qu, Q. et al. Geochemistry of vanadium (V) in Chinese coals. Environ Geochem Health 39, 967–986 (2017). https://doi.org/10.1007/s10653-016-9877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9877-2

Keywords