Environmental Geochemistry and Health

, Volume 39, Issue 4, pp 835–845 | Cite as

Elemental composition of Malawian rice

  • Edward J. M. Joy
  • E. Louise Ander
  • Martin R. Broadley
  • Scott D. Young
  • Allan D. C. Chilimba
  • Elliott M. Hamilton
  • Michael J. Watts
Original Paper

Abstract

Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryzasativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers’ fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg−1, dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg−1, and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg−1, dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could significantly increase Se and Zn concentrations and require further investigation. Concentrations of Fe in rice grain varied greatly, and this was likely due to contamination of rice samples with soil. Risk of As, Cd or Pb toxicity due to rice consumption in Malawi appears to be minimal.

Keywords

Arsenic Micronutrient deficiencies Phytic acid Rice Selenium Zinc 

Supplementary material

10653_2016_9854_MOESM1_ESM.xlsx (12 kb)
Supplementary material 1 (XLSX 11 kb)
10653_2016_9854_MOESM2_ESM.xlsx (17 kb)
Supplementary material 2 (XLSX 16 kb)
10653_2016_9854_MOESM3_ESM.xlsx (64 kb)
Supplementary material 3 (XLSX 63 kb)
10653_2016_9854_MOESM4_ESM.xlsx (22 kb)
Supplementary material 4 (XLSX 22 kb)
10653_2016_9854_MOESM5_ESM.xlsx (10 kb)
Supplementary material 5 (XLSX 10 kb)

References

  1. Adedire, C. O., Adeyemi, J. A., Paulelli, A. C., Martins-Junior, A. C., Ileke, K. D., Segura, F. R., et al. (2015). Toxic and essential elements in Nigerian rice and estimation of dietary intake through rice consumption. Food Additives & Contaminants: Part B, 8(4), 271–276.Google Scholar
  2. Adomako, E. E., Williams, P. N., Deacon, C., & Meharg, A. A. (2011). Inorganic arsenic and trace elements in Ghanaian grain staples. Environmental Pollution, 159(10), 2435–2442.CrossRefGoogle Scholar
  3. Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health, 31(5), 537–548.CrossRefGoogle Scholar
  4. Al-Rmalli, S. W., Jenkins, R. O., Watts, M. J., & Haris, P. I. (2012). Reducing human exposure to arsenic, and simultaneously increasing selenium and zinc intake, by substituting non-aromatic rice with aromatic rice in the diet. Biomedical Spectroscopy and Imaging, 1(4), 365–381.Google Scholar
  5. Banerjee, M., Banerjee, N., Bhattacharjee, P., Mondal, D., Lythgoe, P. R., Martinez, M., et al. (2013). High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports, 3, 1–8.Google Scholar
  6. Bohn, T., Davidsson, L., Walczyk, T., & Hurrell, R. F. (2004). Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. American Journal of Clinical Nutrition, 79(3), 418–423.Google Scholar
  7. Bouis, H. E., & Welch, R. M. (2010). Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science, 50(S1), 20–32.CrossRefGoogle Scholar
  8. Broadley, M. R., Chilimba, A. D. C., Joy, E. J. M., Young, S. D., Black, C. R., Ander, E. L., et al. (2012). Dietary requirements for magnesium but not calcium are likely to be met in Malawi based on national food supply data. International Journal for Vitamin and Nutrition Research, 82(3), 192–199.CrossRefGoogle Scholar
  9. Chilimba, A. D. C., Young, S. D., Black, C. R., Rogerson, K. B., Ander, E. L., Watts, M. J., et al. (2011). Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in Malawi. Scientific Reports,. doi:10.1038/srep00072.Google Scholar
  10. Daum, D., Bogdan, K., Schenk, M. K., & Merkel, D. (2002). Influence of the field water management on accumulation of arsenic and cadmium in paddy rice. In W. J. Horst, et al. (Eds.), Plant nutrition (pp. 290–291). Dordrecht: Springer.Google Scholar
  11. Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 38(1), 61–69.CrossRefGoogle Scholar
  12. Food and Agriculture Organization of the United Nations, FAO. (2015). FAOSTAT database. http://faostat3.fao.org/. Accessed June 2015.
  13. Fredlund, K., Isaksson, M., Rossander-Hulthén, L., Almgren, A., & Sandberg, A. S. (2006). Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medicine and Biology, 20(1), 49–57.CrossRefGoogle Scholar
  14. Fuge, R., & Johnson, C. C. (1986). The geochemistry of iodine—A review. Environmental Geochemistry and Health, 8(2), 31–54.CrossRefGoogle Scholar
  15. Gibson, R. S., Bailey, K. B., Gibbs, M., & Ferguson, E. L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and Nutrition Bulletin, 31(2 Suppl), S134–146.CrossRefGoogle Scholar
  16. Gibson, R. S., Wawer, A. A., Fairweather-Tait, S. J., Hurst, R., Young, S. D., Broadley, M. R., et al. (2015). Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. Journal of Food Composition and Analysis, 40, 19–23.CrossRefGoogle Scholar
  17. Hamilton, E. M., Barlow, T. S., Gowing, C. J. B., & Watts, M. J. (2015). Bioaccessibility performance data for fifty-seven elements in guidance material BGS 102. Microchemical Journal, 123, 131–138.CrossRefGoogle Scholar
  18. Harris, D., Rashid, A., Miraj, G., Arif, M., & Yunas, M. (2008). On-farm seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306(1), 3–10.CrossRefGoogle Scholar
  19. Hurst, R., Siyame, E. W. P., Young, S. D., Chilimba, A. D. C., Joy, E. J. M., Black, C. R., et al. (2013). Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Scientific Reports,. doi:10.1038/srep01425.Google Scholar
  20. Institute of Medicine of the National Academies, IOM. (2000). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington DC: National Academies Press.Google Scholar
  21. Institute of Medicine of the National Academies, IOM. (2002). Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington DC: National Academies Press.Google Scholar
  22. Joy, E. J. M., Ander, E. L., Young, S. D., Black, C. R., Watts, M. J., Chilimba, A. D. C., et al. (2014). Dietary mineral supplies in Africa. Physiologia Plantarum, 151(3), 208–229.CrossRefGoogle Scholar
  23. Joy, E. J. M., Broadley, M. R., Young, S. D., Black, C. R., Chilimba, A. D. C., Ander, E. L., et al. (2015a). Soil type influences crop mineral composition in Malawi. Science of the Total Environment, 505(1), 587–595.CrossRefGoogle Scholar
  24. Joy, E. J. M., Kumssa, D. B., Broadley, M. R., Watts, M. J., Young, S. D., Chilimba, A. D. C., et al. (2015b). Dietary mineral supplies in Malawi: Spatial and socioeconomic assessment. BMC Nutrition, 1, 42. doi:10.1186/s40795-015-0036-4.CrossRefGoogle Scholar
  25. Joy, E. J. M., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015c). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil, 389(1), 1–24.CrossRefGoogle Scholar
  26. Kalimbira, A. A., Chilima, D. M., Mtimuni, B. M., & Mvula, N. (2005). Knowledge and practices related to use of iodised salt among rural Malawian households. Bunda Journal of Agriculture, Environmental Science and Technology, 3, 73–82.Google Scholar
  27. Konietzny, U., & Greiner, R. (2003). Phytic acid: nutritional impact. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopaedia of food science and nutrition (pp. 4555–4563). London: Elsevier.CrossRefGoogle Scholar
  28. Kumssa, D. B., Joy, E. J. M., Ander, E. L., Watts, M. J., Young, S. D., Walker, S., et al. (2015). Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Scientific Reports,. doi:10.1038/srep10974.Google Scholar
  29. Meharg, A. A., Williams, P. N., Adomako, E., Lawgali, Y. Y., Deacon, C., Villada, A., et al. (2009). Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology, 43(5), 1612–1617.CrossRefGoogle Scholar
  30. Mohammed, N. K., & Spyrou, N. M. (2009). Trace elemental analysis of rice grown in two regions of Tanzania. Journal of Radioanalytical and Nuclear Chemistry, 281, 79–82.CrossRefGoogle Scholar
  31. Mondal, D., & Polya, D. A. (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 23(11), 2987–2998.CrossRefGoogle Scholar
  32. National Statistics Office of the Republic of Malawi, NSO. (2012). Malawi Third Integrated Household Survey (IHS3). NSO, Zomba, Malawi and World Bank Living Standards and Measurements Surveys. http://www.worldbank.org/en/research. Accessed Sep 2013.
  33. Pinson, S. R. M., Tarpley, L., Yan, W., Yeater, K., Lahner, B., Yakubova, E., et al. (2014). Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Science, 55(1), 1–18.Google Scholar
  34. Reason, D. A., Watts, M. J., Devez, A., Broadley, M. R. (2015). Quantification of phytic acid in grains, British Geological Survey Open Report, OR/15/070, p. 18.Google Scholar
  35. Rothenberg, S. E., Mgutshini, N. L., Bizimis, M., Johnson-Beebout, S. E., & Ramanantsoanirina, A. (2015). Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza sativa L.). Environmental Pollution, 196, 125–133.CrossRefGoogle Scholar
  36. Siyame, E. W. P., Hurst, R., Wawer, A. A., Young, S. D., Broadley, M. R., Chilimba, A. D. C., et al. (2013). A high prevalence of zinc-but not iron-deficiency among women in rural Malawi: A cross-sectional study. International Journal for Vitamin and Nutrition Research, 83(3), 176–187.CrossRefGoogle Scholar
  37. Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: A review. Advances in Agronomy, 64, 149–195.CrossRefGoogle Scholar
  38. Stein, A. J. (2010). Global impacts of human mineral malnutrition. Plant and Soil, 335(1), 133–154.CrossRefGoogle Scholar
  39. Stein, A. J., Nestel, P., Meenakshia, J. V., Qaim, M., Sachdev, H. P. S., & Bhutta, Z. A. (2007). Plant breeding to control zinc deficiency in India: How cost-effective is biofortification? Public Health Nutrition, 10(5), 492–501.CrossRefGoogle Scholar
  40. Stroud, J. L., Khan, M. A., Norton, G. J., Islam, M. R., Dasgupta, T., Zhu, Y.-G., et al. (2011). Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environmental Science Technology, 45, 4262–4269.CrossRefGoogle Scholar
  41. United States Department of Agriculture, Agricultural Research Service, USDA-ARS. (2013). USDA National Nutrient Database for Standard Reference, Release 26. http://www.ars.usda.gov/nutrientdata. Accessed Sep 2014.
  42. United States Environmental Protection Agency, US EPA. (1994). Integrated risk information system (IRIS): Cadmium. http://www.epa.gov/iris/subst/0141.htm. Accessed Sep 2015.
  43. United States Environmental Protection Agency, US EPA. (1998). Integrated risk information system (IRIS): Inorganic arsenic. http://www.epa.gov/iris/subst/0278.htm. Accessed Sep 2015.
  44. United States Food and Drug Administration, US FDA. (2013). Analytical results from inorganic arsenic in rice and rice products sampling. http://www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm319870.htm. Accessed Mar 2014.
  45. Verduzco‐Gallo, I., Ecker, O., & Pauw, K. (2014). Changes in food and nutrition security in Malawi: Analysis of recent survey evidence. Working Paper 06. International Food Policy Research Institute, Washington DC, USA.Google Scholar
  46. Watts, M. J., Button, M., Brewer, T. S., Jenkin, G. R., & Harrington, C. F. (2008). Quantitative arsenic speciation in two species of earthworms from a former mine site. Journal of Environmental Monitoring, 10(6), 753–759.CrossRefGoogle Scholar
  47. Watts, M. J., Joy, E. J. M., Young, S. D., Broadley, M. R., Chilimba, A. D. C., Gibson, R. S., et al. (2015). Iodine source apportionment in the Malawian diet. Scientific Reports,. doi:10.1038/srep15251.Google Scholar
  48. Wessells, K. P., & Brown, K. H. (2012). Estimating global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One, 7(11), e50568. doi:10.1371/journal.pone.0050568.CrossRefGoogle Scholar
  49. White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49–84.CrossRefGoogle Scholar
  50. Williams, P. N., Lombi, E., Sun, G.-X., Scheckel, K., Zhu, Y.-G., Feng, X., et al. (2009). Selenium characterization in the global rice supply chain. Environmental Science and Technology, 43(15), 6024–6030.CrossRefGoogle Scholar
  51. Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39(15), 5531–5540.CrossRefGoogle Scholar
  52. World Health Organization and Food and Agriculture Organization of the United Nations, WHO & FAO. (2004). Vitamin and mineral requirements in human nutrition. Geneva: WHO.Google Scholar
  53. World Health Organization, WHO. (2001). Arsenic and arsenic compounds. Environmental health criteria 224 (2nd ed.). Geneva: WHO.Google Scholar
  54. World Health Organization, WHO. (2008). Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia. Geneva: WHO. http://apps.who.int/iris/bitstream/10665/43894/1/9789241596657_eng.pdf. Accessed 19 July 2016.
  55. Yang, Q. W., Lan, C. Y., Wang, H. B., Zhuang, P., & Shu, W. S. (2006). Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang. China. Agricultural Water Management, 84(1–2), 147–152.CrossRefGoogle Scholar
  56. Yang, Q. W., Shu, W. S., Qiu, J. W., Wang, H. B., & Lan, C. Y. (2004). Lead in paddy soils and rice plants and its potential health risk around Lechang lead/zinc mine, Guangdong, China. Environment International, 30, 883–889.CrossRefGoogle Scholar
  57. Zia, M. H., Watts, M. J., Gardner, A., & Chenery, S. R. (2015). Iodine status of soils, grain, crops, and irrigation waters in Pakistan. Environmental Earth Sciences, 73(12), 7995–8008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Edward J. M. Joy
    • 1
    • 2
    • 3
  • E. Louise Ander
    • 2
  • Martin R. Broadley
    • 3
  • Scott D. Young
    • 3
  • Allan D. C. Chilimba
    • 4
  • Elliott M. Hamilton
    • 2
  • Michael J. Watts
    • 2
  1. 1.Department of Population HealthLondon School of Hygiene & Tropical MedicineLondonUK
  2. 2.Inorganic Geochemistry, Centre for Environmental GeochemistryBritish Geological SurveyKeyworth, NottinghamUK
  3. 3.School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughUK
  4. 4.Department of Agricultural Research ServicesMinistry of Agriculture, Irrigation and Water DevelopmentLilongwe 3Malawi

Personalised recommendations