Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review

Abstract

Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abdelmoneim, T. S., Moussa, T. A., Almaghrabi, O. A., & Abdelbagi, I. (2014). Investigation the effect of arbuscular mycorrhizal fungi on the tolerance of maize plant to heavy metals stress. Life Science Journal, 11, 255–263.

    CAS  Google Scholar 

  2. Abiven, S., Hund, A., Martinsen, V., & Cornelissen, G. (2015). Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia. Plant and Soil,. doi:10.1007/s11104-015-2533-2.

    Google Scholar 

  3. Adiloglu, A., Adiloglu, S., Gonulsuz, E., & Oner, N. (2005). Effect of zinc application on cadmium uptake of maize grown in zinc deficient soil. Pakistan Journal of Biological Sciences, 8, 10–12.

    CAS  Article  Google Scholar 

  4. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., et al. (2015a). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148–8162.

    CAS  Article  Google Scholar 

  5. Adrees, M., Ali, S., Rizwan, M., Rehman, M. Z., Ibrahim, M., Abbas, F., et al. (2015b). Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186–197.

    CAS  Article  Google Scholar 

  6. Aghababaei, F., & Raiesi, F. (2015). Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in Cd-polluted soils. Soil Biology and Biochemistry, 86, 87–97.

    CAS  Article  Google Scholar 

  7. Aghababaei, F., Raiesi, F., & Hosseinpur, A. (2014). The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils. Pedobiologia, 57, 223–233.

    Article  Google Scholar 

  8. Ahmad, I., Akhtar, M. J., Asghar, H. N., Ghafoor, U., & Shahid, M. (2015a). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation,. doi:10.1007/s00344-015-9534-5.

    Google Scholar 

  9. Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Mitter, B. (2015b). Organic amendments: Effects on cereals growth and cadmium remediation. International Journal of Environmental Science and Technology, 12, 2919–2928.

    CAS  Article  Google Scholar 

  10. Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B.-Y., Ahn, J.-H., et al. (2016). Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186.

    CAS  Article  Google Scholar 

  11. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    CAS  Article  Google Scholar 

  12. Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Kanwal, S., Ali, Q., et al. (2015). Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environmental Science and Pollution Research, 22, 10601–10609.

    CAS  Article  Google Scholar 

  13. Aliu, S., Rusinovci, I., Doko, A., Salihu, S., Fetahu, S., Elezi, F., & Gashi, B. (2015). Stomatal characteristics and their relationship to heavy metals in maize (Zea mays L.) seedlings. Journal of Food, Agriculture and Environment, 13, 168–171.

    CAS  Google Scholar 

  14. Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Kim, K.-R., Moon, D. H., Lee, S. S., & Ok, Y. S. (2012). Effects of synthetic chelators and low-molecular-weight organic acids on chromium, copper, and arsenic uptake and translocation in maize (Zea mays L.). Soil Science, 177, 655–663.

    CAS  Article  Google Scholar 

  15. Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Kim, K.-R., Vithanage, M., & Ok, Y. S. (2013). Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil. Environmental Technology, 34, 747–755.

    CAS  Article  Google Scholar 

  16. Almaroai, Y. A., Usman, A. R. A., Ahmad, M., Moon, D. H., Cho, J.-S., Joo, Y. K., et al. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, 71, 1289–1296.

    CAS  Article  Google Scholar 

  17. Al-Mureish, K., Othman, N. A. R. M., & Al-Hakimi, A. M. A. (2014). Salicylic acid-mediated alleviation of cadmium toxicity in maize leaves. Journal Plant Science, 2, 276–281.

    Google Scholar 

  18. Al-Wabel, M. I., Usman, A. R., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., & Al-Omran, A. (2015). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22, 503–511.

    CAS  Article  Google Scholar 

  19. Anjum, S. A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I., et al. (2015a). Cadmium toxicity in maize (Zea mays L.): Consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22, 17022–17030.

    CAS  Article  Google Scholar 

  20. Anjum, S. A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., et al. (2016). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research,. doi:10.1007/s11356-016-6382-1.

    Google Scholar 

  21. Anjum, S. A., Tanveer, M., Hussain, S., Wang, L., Khan, I., Samad, R. A., et al. (2015b). Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. CLEAN–Soil, Air. Water,. doi:10.1002/clen.201400905.

    Google Scholar 

  22. Antonkiewicz, J., & Para, A. (2015). The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. International Journal of Phytoremediation,. doi:10.1080/15226514.2015.1078771.

    Google Scholar 

  23. Arbaoui, S., Evlard, A., Mhamdi, M. E. W., Campanella, B., Paul, R., & Bettaieb, T. (2013). Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation, 24, 563–567.

    CAS  Article  Google Scholar 

  24. Artiushenko, T., Syshchykov, D., Gryshko, V., Čiamporová, M., Fiala, R., Repka, V., et al. (2014). Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia, 69, 1142–1147.

    CAS  Article  Google Scholar 

  25. Asgher, M., Khan, M. I. R., Anjum, N. A., & Khan, N. A. (2015). Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma, 252, 399–413.

    CAS  Article  Google Scholar 

  26. Astolfi, S., Zuchi, S., & Passera, C. (2004). Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. Journal of Plant Physiology, 161, 795–802.

    CAS  Article  Google Scholar 

  27. Astolfi, S., Zuchi, S., & Passera, C. (2005). Effect of cadmium on H + ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Science, 16, 361–368.

    Article  CAS  Google Scholar 

  28. ATSDR. (2011). Agency for toxic substances and disease registry (ATSDR). The 2011 priority list of hazardous substances. http://www.atsdr.cdc.gov/SPL/index.html.

  29. Azeez, J. O., Hassan, O. A., Adesodun, J. K., & Arowolo, T. A. (2013). Soil metal sorption characteristics and its influence on the comparative effectiveness of EDTA and legume intercrop on the phytoremediative abilities of maize (Zea mays), mucuna (Mucuna pruriens), okra (Abelmoschus esculentus), and kenaf (Hibiscus cannabinus). Soil Sediment Contamination International Journal, 22, 930–957.

    CAS  Article  Google Scholar 

  30. Bi, X., Feng, X., Yang, Y., Li, X., Shin, G. P., Li, F., et al. (2009). Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution, 157, 834–839.

    CAS  Article  Google Scholar 

  31. Broadhurst, C. L., Chaney, R. L., Davis, A. P., Cox, A., Kumar, K., Reeves, R. D., & Green, C. E. (2015). Growth and cadmium phytoextraction by swiss chard, maize, rice, Noccaea caerulescens, and Alyssum murale in pH Adjusted biosolids amended soils. International Journal of Phytoremediation, 17, 25–39.

    CAS  Article  Google Scholar 

  32. Castillo-Michel, H. A., Hernandez, N., Martinez-Martinez, A., Parsons, J. G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2009). Coordination and speciation of cadmium in corn seedlings and its effects on macro-and micronutrients uptake. Plant Physiology and Biochemistry, 47, 608–614.

    CAS  Article  Google Scholar 

  33. Chaffai, R., Tekitek, A., & El Ferjani, E. (2006). A comparative study on the organic acid content and exudation in maize (Zea mays L.) seedlings under conditions of copper and cadmium stress. Asian Journal of Plant Sciences, 5, 598–606.

    CAS  Article  Google Scholar 

  34. Chaneva, G., Parvanova, P., Tzvetkova, N., & Uzunova, A. (2010). Photosynthetic response of maize plants against cadmium and paraquat impact. Water, Air, and Soil pollution, 208, 287–293.

    CAS  Article  Google Scholar 

  35. Chaney, R. L. (2015). How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Current Pollutin Reports, 1, 13–22.

    Article  Google Scholar 

  36. Chen, B. D., Liu, Y., Shen, H., Li, X. L., & Christie, P. (2004). Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 14, 347–354.

    CAS  Article  Google Scholar 

  37. Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., et al. (2014). Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 33, 374–391.

    CAS  Article  Google Scholar 

  38. Cui, Y., Dong, Y., Li, H., & Wang, Q. (2004). Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environmental International, 30, 323–328.

    CAS  Article  Google Scholar 

  39. Cui, Y., & Wang, Q. (2006). Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil and Environment, 52, 523–529.

    CAS  Google Scholar 

  40. Custos, J. M., Moyne, C., Treillon, T., & Sterckeman, T. (2014). Contribution of Cd-EDTA complexes to cadmium uptake by maize: A modelling approach. Plant and Soil, 374, 497–512.

    CAS  Article  Google Scholar 

  41. da Cunha, K. P. V., & do Nascimento, C. W. A. (2009). Silicon effects on metal tolerance and structural changes in maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water, Air, and Soil pollution, 197, 323–330.

    Article  CAS  Google Scholar 

  42. da Cunha, K. P. V., do Nascimento, C. W. A., de Mendonça Pimentel, R. M., & Ferreira, C. (2008a). Cellular localization of cadmium and structural changes in maize plants grown on cadmium contaminated soil with and without liming. Journal of Hazardous Material, 160, 228–234.

    Article  CAS  Google Scholar 

  43. da Cunha, K. P. V., do Nascimento, C. W. A., & Silva, A. (2008b). Silicon alleviates the toxicity of cadmium and zinc for maize (Zea mays L.) grown on contaminated soil. Journal of Plant Nutrition and Soil Science, 171, 849–853.

    Article  CAS  Google Scholar 

  44. Da Silva, A. J., do Nascimento, C. W. A., da Silva Gouveia-Neto, A., & da Silva Silva-Jr, E. (2012). LED-induced chlorophyll fluorescence spectral analysis for the early detection and monitoring of cadmium toxicity in maize plants. Water, Air, and Soil pollution, 223, 3527–3533.

    CAS  Article  Google Scholar 

  45. Dresler, S., Hanaka, A., Bednarek, W., & Maksymiec, W. (2014). Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiologiae Plantarum, 36, 1565–1575.

    CAS  Article  Google Scholar 

  46. Dresler, S., Wójcik, M., Bednarek, W., Hanaka, A., & Tukiendorf, A. (2015). The effect of silicon on maize growth under cadmium stress. Russian Journal of Plant Physiology, 62, 86–92.

    CAS  Article  Google Scholar 

  47. Du, Y. L., He, M. M., Xu, M., Yan, Z. G., Zhou, Y. Y., Guo, G. L., et al. (2014). Interactive effects between earthworms and maize plants on the accumulation and toxicity of soil cadmium. Soil Biology and Biochemistry, 72, 193–202.

    CAS  Article  Google Scholar 

  48. Ekmekçi, Y., Tanyolac, D., & Ayhan, B. (2008). Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165, 600–611.

    Article  CAS  Google Scholar 

  49. Fahad, S., Hussain, S., Saud, S., Hassan, S., Chen, Y., Deng, N., et al. (2015). Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. CLEAN–Soil, Air, Water,. doi:10.1002/clen.201400376.

    Google Scholar 

  50. Farooq, M. A., Ali, S., Hameed, A., Bharwana, S. A., Rizwan, M., Ishaque, W., et al. (2016). Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. South African Journal of Botany, 104, 61–68.

    CAS  Article  Google Scholar 

  51. Fassler, E., Robinson, B. H., Gupta, S. K., & Schulin, R. (2010a). Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions. Nutrient Cycling in Agroecosystems, 87, 339–352.

    Article  CAS  Google Scholar 

  52. Fassler, E., Robinson, B. H., Stauffer, W., Gupta, S. K., Papritz, A., & Schulin, R. (2010b). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems and Environment, 136, 49–58.

    Article  CAS  Google Scholar 

  53. Gajdos, É., Lévai, L., Veres, S., & Kovács, B. (2012). Effects of biofertilizers on maize and sunflower seedlings under cadmium stress. Communications in Soil Science and Plant Analysis, 43, 272–279.

    CAS  Article  Google Scholar 

  54. Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.

    CAS  Article  Google Scholar 

  55. Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants, probing the role of sulfur. Plant Signaling and Behavior, 6, 215–222.

    CAS  Article  Google Scholar 

  56. Gondek, K. (2010). Zinc and cadmium accumulation in maize [Zea mays L.] and the concentration of mobile forms of these metals in soil after application of farmyard manure and sewage sludge. Journal of Elementology, 15, 639–652.

    Google Scholar 

  57. Gowayed, S. M. H., & Almaghrabi, O. A. (2013). Effect of copper and cadmium on germination and anatomical structure of leaf and root seedling in maize (Zea mays L). Australian Journal of Basic and Applied Sciences, 7, 548–555.

    CAS  Google Scholar 

  58. Gozubenli, H. (2010). Seed vigor of maize grown on the contaminated soils by cadmium. Asian Journal of Plant Sciences, 9, 168–171.

    CAS  Article  Google Scholar 

  59. Guo, X. F., Wei, Z. B., Wu, Q. T., Qiu, J. R., & Zhou, J. L. (2011). Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere, 21, 650–656.

    CAS  Article  Google Scholar 

  60. Gupta, D., & Abdullah, (2011). Toxicity of copper and cadmium on germination and Seedling growth of maize (Zea mays L.) seeds. Indian Journal of Scientific Research, 2, 67–70.

    CAS  Article  Google Scholar 

  61. Habiba, U., Ali, S., Farid, M., Shakoor, M. B., Rizwan, M., Ibrahim, M., et al. (2015). EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environmental Science and Pollution Research, 22, 1534–1544.

    CAS  Article  Google Scholar 

  62. Han, F., Shan, X., Zhang, S., Wen, B., & Owens, G. (2006). Enhanced cadmium accumulation in maize roots-the impact of organic acids. Plant and Soil, 289, 355–368.

    CAS  Article  Google Scholar 

  63. Hechmi, N., Aissa, N. B., Abdennaceur, H., & Jedidi, N. (2013). Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. International Journal of Phytoremediation, 15, 703–713.

    CAS  Article  Google Scholar 

  64. Hussain, I., Akhtar, S., Ashraf, M. A., Rasheed, R., Siddiqi, E. H. N., & Ibrahim, M. (2013). Response of maize seedlings to cadmium application after different time intervals. International Scholarly Research Notices: Agronomy,. doi:10.1155/2013/169610.

    Google Scholar 

  65. Hussain, I., Iqbal, M., Qurat-ul-Ain, S., Rasheed, R., Mahmood, S., Perveen, A., & Wahid, A. (2012). Cadmium dose and exposure-time dependent alterations in growth and physiology of maize (Zea mays). International Journal of Agriculture and Biology, 14, 959–964.

    CAS  Google Scholar 

  66. Jiang, H. M., Yang, J. C., & Zhang, J. F. (2007). Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environmental Pollution, 147, 750–756.

    CAS  Article  Google Scholar 

  67. Karcz, W., & Kurtyka, R. (2007). Effect of cadmium on growth, proton extrusion and membrane potential in maize coleoptile segments. Biologia Plantarum, 51, 713–719.

    CAS  Article  Google Scholar 

  68. Keller, C., Rizwan, M., Davidian, J. C., Pokrovsky, O. S., Bovet, N., Chaurand, P., & Meunier, J. D. (2015). Effect of Silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta, 241, 847–860.

    CAS  Article  Google Scholar 

  69. Keltjens, W. G., & Van Beusichem, M. L. (1998). Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): Combined effects of copper and cadmium. Plant and Soil, 203, 119–126.

    CAS  Article  Google Scholar 

  70. Khan, M. U., Shahbaz, N., Waheed, S., Mahmood, A., Shinwari, Z. K., & Malik, R. N. (2016). Comparative health risk surveillance of heavy metals via dietary foodstuff consumption in different land-use types of Pakistan. Human and Ecological Risk Assessment: An International Journal, 22, 168–186.

    CAS  Article  Google Scholar 

  71. Khurana, M., & Kansal, B. (2012). Influence of zinc supply on the phytotoxicity of cadmium in maize (Zea mays L.) grown on cadmium-contaminated soil. Acta Agronomica Hungarica, 60, 37–46.

    CAS  Article  Google Scholar 

  72. Khurana, M. P. S., & Kansal, B. D. (2014). Effect of farm yard manure on chemical fractionation of cadmium and its bio-availability to maize crop grown on sewage irrigated coarse textured soil. Journal of Environmental Biology, 35, 431–437.

    CAS  Google Scholar 

  73. Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., et al. (2015). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153–159.

    Article  CAS  Google Scholar 

  74. Klaus, A. A., Lysenko, E. A., & Kholodova, V. P. (2013). Maize plant growth and accumulation of photosynthetic pigments at short-and long-term exposure to cadmium. Russian Journal Plant Physiology, 60, 250–259.

    CAS  Article  Google Scholar 

  75. Kostandi, S. F., Soliman, M. F., Beschow, H., & Merbach, W. (2012). Rhizosphere effects of maize hybrids and N forms on Cd bioavailability in a limed soil. Archives of Agronomy and Soil Science, 58, 903–913.

    CAS  Article  Google Scholar 

  76. Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.

    CAS  Article  Google Scholar 

  77. Kuliková, Z. L., & Lux, A. (2010). Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 85, 243–250.

    Article  CAS  Google Scholar 

  78. Kumar, P., Tewari, R. K., & Sharma, P. N. (2008). Cadmium enhances generation of hydrogen peroxide and amplifies activities of catalase, peroxidases and superoxide dismutase in maize. Journal of Agronomy and Crop Science, 194, 72–80.

    CAS  Article  Google Scholar 

  79. Kurtyka, R., Malkowski, E., Kita, A., & Karcz, W. (2008). Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Polish Journal of Environmental Studies, 17, 51–56.

    CAS  Google Scholar 

  80. Lagriffoul, A., Mocquot, B., Mench, M., & Vangronsveld, J. (1998). Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil, 200, 241–250.

    CAS  Article  Google Scholar 

  81. Li, H. Y., & Shao, H. (2012). Exogenous nitric oxide reduces cadmium toxicity of maize roots. Advanced Materials Research, 378, 409–413.

    Google Scholar 

  82. Li, N. Y., Li, Z. A., Zhuang, P., Zou, B., & McBride, M. (2009). Cadmium uptake from soil by maize with intercrops. Water, Air, and Soil pollution, 199, 45–56.

    CAS  Article  Google Scholar 

  83. Li, T., Liu, M. J., Zhang, X. T., Zhang, H. B., Sha, T., & Zhao, Z. W. (2011). Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Science of the Total Environment, 409, 1069–1074.

    CAS  Article  Google Scholar 

  84. Liang, C. C., Li, T., Xiao, Y. P., Liu, M. J., Zhang, H. B., & Zhao, Z. W. (2009). Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal of Phytoremediation, 11, 692–703.

    CAS  Article  Google Scholar 

  85. Liang, Y. C., Wong, J. W. C., & Long, W. (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58, 475–483.

    CAS  Article  Google Scholar 

  86. Lim, J. E., Ahmad, M., Lee, S. S., Shope, C. L., Hashimoto, Y., Kim, K.-R., et al. (2013). Effect of lime-based waste materials on immobilization and phytoavailability of cadmium and lead in contaminated soil. CLEAN—Soil, Air, Water, 41, 1235–1241.

    CAS  Article  Google Scholar 

  87. Liu, D. H., Wang, M., Zou, J. H., & Jiang, W. S. (2006). Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize (Zea mays L.). Pakistan Journal of Botany, 38, 701–709.

    Google Scholar 

  88. Liu, L., Gong, Z., Zhang, Y., & Li, P. (2014). Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 23, 1979–1986.

    CAS  Article  Google Scholar 

  89. Liu, L., Zhang, Q., Hu, L., Tang, J., Xu, L., Yang, X., et al. (2012). Legumes can increase cadmium contamination in neighboring crops. PLoS One, 7, e42944.

    CAS  Article  Google Scholar 

  90. Liu, Y., Zhuang, P., Li, Z., Zou, B., Wang, G., Li, N., & Qiu, J. (2013a). Cadmium accumulation in maize monoculture and intercropping with six legume species. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science, 63, 376–382.

    CAS  Google Scholar 

  91. Liu, Y., Zhuang, P., Li, Z., Zou, B., Wang, G., Li, N., & Qiu, J. (2013b). Effects of fertiliser and intercropping on cadmium uptake by maize. Chemical Ecology, 29, 489–500.

    CAS  Article  Google Scholar 

  92. Liu, Y., Liu, K., Li, Y., Yang, W., Wu, F., Zhu, P., Zhang, J., Chen, L., Gao, S., & Zhang, L. (2015). Cadmium contamination of soil and crops is affected by intercropping and rotation systems in the lower reaches of the Minjiang River in south-western China. Environmental geochemistry and health. doi:10.1007/s10653-015-9762-4.

    Google Scholar 

  93. Lopez-Chuken, U. J., López-Domínguez, U., Parra-Saldivar, R., Moreno-Jiménez, E., Hinojosa-Reyes, L., Guzmán-Mar, J. L., & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced cadmium uptake in saline agriculture: Modeling cadmium uptake by maize and tobacco. International Journal of Environmental Science and Technology, 9, 69–77.

    CAS  Article  Google Scholar 

  94. Lopez-Chuken, U. J., Young, S. D., & Sanchez-Gonzalez, M. N. (2010). The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: Testing a “free ion activity model” and implications for phytoremediation. International Journal of Phytoremediation, 12, 680–696.

    CAS  Article  Google Scholar 

  95. Lukačová, Z., Švubová, R., Kohanová, J., & Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70, 89–103.

    Article  CAS  Google Scholar 

  96. Lux, A., Lackovič, A., Staden, V. J., Lišková, D., Kohanová, J., & Martinka, M. (2015). Cadmium translocation by contractile roots differs from that in regular, non-contractile roots. Annals of Botany, 115, 1149–1154.

    Article  Google Scholar 

  97. Lysenko, E. A., Klaus, A. A., Pshybytko, N. L., & Kusnetsov, V. V. (2015). Cadmium accumulation in chloroplasts and its impact on chloroplastic processes in barley and maize. Phytosynthesis Research, 125, 291–303.

    CAS  Article  Google Scholar 

  98. Ma, J., Cai, H., He, C., Zhang, W., & Wang, L. (2015). A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa L.) cells. New Phytologist,. doi:10.1111/nph.13276.

    Google Scholar 

  99. Malekzadeh, P., Khara, J., Farshian, S., Jamal-Abad, A. Z. K., & Rahmatzadeh, S. (2007). Cadmium toxicity in maize seedlings: Changes in antioxidant enzyme activities and root growth. Pakistan Journal of Bilogical Sciences, 10, 127–131.

    CAS  Article  Google Scholar 

  100. Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., et al. (2010). The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78, 35–41.

    CAS  Article  Google Scholar 

  101. Metwali, M. R., Gowayed, S. M., Al-Maghrabi, O. A., & Mosleh, Y. Y. (2013). Evaluation of toxic effect of copper and cadmium on growth, physiological traits and protein profile of wheat (Triticum aestivum L.), Maize (Zea mays L.) and sorghum (Sorghum bicolor L.). World Applied Sciences Journal, 21, 301–304.

    CAS  Google Scholar 

  102. Mihalicova, S. M., Ducaiova, Z., Maslaáková, I., & Backor, M. (2014). Effect of silicon on growth, photosynthesis, oxidative status and phenolic compounds of maize (Zea mays L.) grown in cadmium excess. Water, Air, and Soil Pollution, 225, 1–11.

    Google Scholar 

  103. Mohamed, I., Zhang, G. S., Li, Z. G., Liu, Y., Chen, F., & Dai, K. (2015). Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67–76.

    Article  Google Scholar 

  104. Moreira, H., Marques, A. P., Franco, A. R., Rangel, A. O., & Castro, P. M. (2014). Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research, 21, 9742–9753.

    CAS  Article  Google Scholar 

  105. Murakami, M., Ae, N., & Ishikawa, S. (2007). Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (L.). Environmental Pollution, 145, 96–103.

    CAS  Article  Google Scholar 

  106. Murtaza, G., Javed, W., Hussain, A., Wahid, A., Murtaza, B., & Owens, G. (2015). Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Zea mays Pakistan. Environmental Science and Pollution Research, 22, 9136–9147.

    CAS  Article  Google Scholar 

  107. Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48, 638–647.

    CAS  Article  Google Scholar 

  108. Nguyen, C., Soulier, A. J., Masson, P., Bussière, S., & Cornu, J. Y. (2015). Accumulation of Cd, Cu and Zn in shoots of maize (Zea mays L.) exposed to 0.8 or 20 nM Cd during vegetative growth and the relation with xylem sap composition. Environmental Science and Pollution Research,. doi:10.1007/s11356-015-5782-y.

    Google Scholar 

  109. Nikolić, N., Borišev, M., Pajević, S., Župunski, M., Topić, M., & Arsenov, D. (2014). Responses of wheat (Triticum aestivum L.) and maize (Zea mays L.) plants to cadmium toxicity in relation to magnesium nutrition. Acta Botanica Croatia, 73, 359–373.

    Google Scholar 

  110. Nocito, F. F., Espen, L., Crema, B., Cocucci, M., & Sacchi, G. A. (2008). Cadmium induces acidosis in maize root cells. New Phytologist, 179, 700–711.

    Article  Google Scholar 

  111. Noman, A., Ali, S., Naheed, F., Ali, Q., Farid, M., Rizwan, M., & Irshad, M. K. (2015). Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Archives of Agronomy and Soil Science, 61, 1659–1672.

    CAS  Article  Google Scholar 

  112. Ogbazghi, Z. M., Tesfamariam, E. H., Annandale, J. G., & De Jager, P. C. (2015). Mobility and uptake of zinc, cadmium, nickel, and lead in sludge-amended soils planted to dryland maize and irrigated maize-oat rotation. Journal of Environmental Quality, 44, 655–667.

    CAS  Article  Google Scholar 

  113. Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology Innovation, 4, 206–209.

    Article  Google Scholar 

  114. Ok, Y. S., Kim, S. C., Kim, D. K., Skousen, J. G., Lee, J. S., Cheong, Y. W., et al. (2011). Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 23–30.

    CAS  Article  Google Scholar 

  115. Pal, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2005). Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiologia Plantarum, 125, 356–364.

    CAS  Article  Google Scholar 

  116. Pal, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2006). Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169, 239–246.

    CAS  Article  Google Scholar 

  117. Pan, J., Plant, J. A., Voulvoulis, N., Oates, C. J., & Ihlenfeld, C. (2010). Cadmium levels in Europe: Implications for human health. Environmental Geochemistry and Health, 32, 1–12.

    CAS  Article  Google Scholar 

  118. Perriguey, J., Sterckeman, T., & Morel, J. L. (2008). Effect of rhizosphere and plant-related factors on the cadmium uptake by maize (Zea mays L.). Environmental and Experimental Botany, 63, 333–341.

    CAS  Article  Google Scholar 

  119. Perveen, A., Wahid, A., & Javed, F. (2011). Varietal differences in spring and autumn sown maize (Zea mays) for tolerance against cadmium toxicity. International Journal of Agrciultural and Biology, 13, 909–915.

    CAS  Google Scholar 

  120. Perveen, A., Wahid, A., Mahmood, S., Hussain, I., & Rasheed, R. (2015). Possible mechanism of medium-supplemented thiourea in improving growth, gas exchange, and photosynthetic pigments in cadmium-stressed maize (Zea mays). Brazilian Journal of Botany, 38, 71–79.

    Article  Google Scholar 

  121. Pirselova, B., Kuna, R., Libantová, J., Moravčíková, J., & Matušíková, I. (2011). Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Molecular Biology Reports, 38, 3437–3446.

    CAS  Article  Google Scholar 

  122. Puertas-Mejía, M. A., Ruiz-Díez, B., & Fernández-Pascual, M. (2010). Effect of cadmium ion excess over cell structure and functioning of Zea mays and Hordeum vulgare. Biochemical Systematics and Ecology, 38, 285–291.

    Article  CAS  Google Scholar 

  123. Putwattana, N., Kruatrachue, M., Kumsopa, A., & Pokethitiyook, P. (2015). Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. International Journal of Phytoremediation, 17, 165–174.

    CAS  Article  Google Scholar 

  124. Qiao, Y., Crowley, D., Wang, K., Zhang, H., & Li, H. (2015). Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, 206, 636–643.

    CAS  Article  Google Scholar 

  125. Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Science, 1312, 105–112.

    Article  Google Scholar 

  126. Redjala, T., Sterckeman, T., & Morel, J. L. (2009). Cadmium uptake by roots: Contribution of apoplast and of high-and low-affinity membrane transport systems. Environmental and Experimental Botany, 67, 235–242.

    CAS  Article  Google Scholar 

  127. Redjala, T., Zelko, I., Sterckeman, T., Legué, V., & Lux, A. (2011). Relationship between root structure and root cadmium uptake in maize. Environmental and Experimental Botany, 71, 241–248.

    CAS  Article  Google Scholar 

  128. Rees, F., Sterckeman, T., & Morel, J. L. (2015). Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere,. doi:10.1016/j.chemosphere.2015.03.068.

    Google Scholar 

  129. Rehman, M. Z., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M., & Qayyum, M. F. (2015). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soil and its phyto-availability to wheat and rice under rotation. Environmental Science and Pollution Research, 22, 16897–16906.

    CAS  Article  Google Scholar 

  130. Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Rehman, M. Z., Hannan, F., et al. (2016a). Cadmium stress in rice: Toxic effects, tolerance mechanisms and management: A critical review. Environmental Science and Pollution Research,. doi:10.1007/s11356-016-6436-4.

    Google Scholar 

  131. Rizwan, M., Ali, S., Ibrahim, M., Farid, M., Adrees, M., Bharwana, S. A., et al. (2015). Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environmental Science and Pollution Research, 22, 15416–15431.

    CAS  Article  Google Scholar 

  132. Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Rehman, M. Z., Abbas, T., & OK, Y. S. (2016b). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: A critical review. Environmental Science and Pollution Research, 23, 2230–2248.

    CAS  Article  Google Scholar 

  133. Rizwan, M., Meunier, J. D., Davidian, J. C., Pokrovsky, O. S., Bovet, N., & Keller, C. (2016c). Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environmental Science and Pollution Research, 23, 1414–1427.

    CAS  Article  Google Scholar 

  134. Rizwan, M., Meunier, J. D., Hélène, M., & Keller, C. (2012). Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. Journal of Hazardous Material, 209–210, 326–334.

    Article  CAS  Google Scholar 

  135. Rizzardo, C., Tomasi, N., Monte, R., Varanini, Z., Nocito, F. F., Cesco, S., & Pinton, R. (2012). Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta, 236, 1701–1712.

    CAS  Article  Google Scholar 

  136. Rochayati, S., Du Laing, G., Rinklebe, J., Meissner, R., & Verloo, M. (2011). Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: Accumulation of cadmium and zinc in soils and shoots of maize plants. Plant Nutrition and Soil Science, 174, 186–194.

    CAS  Article  Google Scholar 

  137. Sabir, M., Ali, A., Zia-ur-Rehman, M., & Hakeem, K. R. (2015). Contrasting effects of farmyard manure (FYM) and compost for remediation of metal contaminated soil. International Journal of Phytoremediation, 17, 613–621.

    Article  Google Scholar 

  138. Sabir, M., Hanafi, M. M., Rehman, M. Z., Saifullah, Ahmad, H. R., Hakeem, K. R., & Aziz, T. (2014). Comparison of low-molecular-weight organic acids and ethylenediaminetetraacetic acid to enhance phytoextraction of heavy metals by maize. Communication in Soil Science and Plant Analysis, 45, 42–52.

    CAS  Article  Google Scholar 

  139. Sangthong, C., Setkit, K., & Prapagdee, B. (2015). Improvement of cadmium phytoremediation after soil inoculation with a cadmium-resistant Micrococcus sp. Environmental Science and Pollution Research,. doi:10.1007/s11356-015-5318-5.

    Google Scholar 

  140. Seregin, I. V., Shpigun, L. K., & Ivanov, V. B. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51, 525–533.

    CAS  Article  Google Scholar 

  141. Seregin, I. V., Vooijs, R., Kozhevnikova, A. D., Ivanov, V. B., & Schat, H. (2007). Effects of cadmium and lead on phytochelatin accumulation in maize shoots and different root parts. Doklady Biological Sciences, 415, 304–306.

    CAS  Article  Google Scholar 

  142. Shen, H., Christie, P., & Li, X. (2006). Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 28, 111–119.

    CAS  Article  Google Scholar 

  143. Shi, Y., Huang, Z., Liu, X., Imran, S., Peng, L., Dai, R., & Deng, Y. (2015). Environmental materials for remediation of soils contaminated with lead and cadmium using maize (Zea mays L.) growth as a bioindicator. Environmental Science and Pollution Research. doi:10.1007/s11356-015-5778-7.

    Google Scholar 

  144. Shumba, A., Marumbi, R., Nyamasoka, B., Nyamugafata, P., Nyamangara, J., & Madyiwa, S. (2014). Mineralisation of organic fertilisers used by urban farmers in harare and their effects on maize (Zea mays L.) biomass production and uptake of nutrients and heavy metals. South African Journal of Plant and Soil, 31, 93–100.

    Article  Google Scholar 

  145. Souza, J. F., Dolder, H., & Cortelazzo, A. L. (2005). Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. Journal of Plant Nutrition, 28, 1923–1931.

    CAS  Article  Google Scholar 

  146. Sozubek, B., Belliturk, K., & Saglam, M. T. (2015). Effect of zinc application on cadmium uptake of maize grown in alkaline soil. Communications in Soil Science and Plant Analysis, 46, 1244–1248.

    CAS  Article  Google Scholar 

  147. Stanislawska-Glubiak, E., Korzeniowska, J., & Kocon, A. (2015). Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils. Environmental Science and Pollution Research, 22, 4706–4714.

    CAS  Article  Google Scholar 

  148. Sterckeman, T., Redjala, T., & Morel, J. L. (2011). Influence of exposure solution composition and of plant cadmium content on root cadmium short-term uptake. Environmental and Experimental Botany, 74, 131–139.

    CAS  Article  Google Scholar 

  149. Stritsis, C., & Claassen, N. (2013). Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant and Soil, 367, 591–603.

    CAS  Article  Google Scholar 

  150. Stritsis, C., Steingrobe, B., & Claassen, N. (2014). Cadmium fractions in an acid sandy soil and Cd in soil solution as affected by plant growth. Journal of Plant Nutrition and Soil Science, 177, 431–437.

    CAS  Article  Google Scholar 

  151. Sun, H. Y., Wang, X. Y., Dai, H. X., Zhang, G. P., & Wu, F. B. (2013). Effect of exogenous glutathione and selenium on cadmium-induced changes in cadmium and mineral concentrations and antioxidative metabolism in maize seedlings. Asian Journal of Chemistry, 25, 2970.

    CAS  Google Scholar 

  152. Szalai, G., Krantev, A., Yordanova, R., Popova, L. P., & Janda, T. (2013). Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turkish Journal of Botany, 37, 708–714.

    CAS  Google Scholar 

  153. Tanwir, K., Akram, M. S., Masood, S., Chaudhary, H. J., Lindberg, S., & Javed, M. T. (2015). Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environmental Science and Pollution Research,. doi:10.1007/s11356-015-4076-8.

    Google Scholar 

  154. Thewys, T., Witters, N., Van Slycken, S., Ruttens, A., Meers, E., Tack, F. M. G., & Vangronsveld, J. (2010). Economic viability of phytoremediation of a cadmium contaminated agricultural area using energy maize. Part I: Effect on the farmer’s income. International Journal of Phytoremediation, 12, 650–662.

    CAS  Article  Google Scholar 

  155. Usman, A. R. A., Almaroai, Y. A., Ahmad, M., Vithanage, M., & Ok, Y. S. (2013). Toxicity of synthetic chelators and metal availability in poultry manure amended Cd, Pb and As contaminated agricultural soil. Journal of Hazardous Materials, 262, 1022–1030.

    CAS  Article  Google Scholar 

  156. Usman, A. R. A., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., & Ok, Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87, 872–878.

    CAS  Article  Google Scholar 

  157. Vaculik, M., Landberg, T., Greger, M., Luxova, M., Stolarikova, M., & Lux, A. (2012). Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize. Annals of Botany, 110, 433–443.

    CAS  Article  Google Scholar 

  158. Vaculik, M., Lux, A., Luxova, M., & Tanimoto, Li. (2009). Silicon mitigates cadmium inhibitory effects in young maize plants. Environmental and Experimental Botany, 67, 52–58.

    CAS  Article  Google Scholar 

  159. Vaculik, M., Pavlovič, A., & Lux, A. (2015). Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize. Ecotoxicology and Environment Safety, 120, 66–73.

    CAS  Article  Google Scholar 

  160. Van Slycken, S., Witters, N., Meers, E., Peene, A., Michels, E., Adriaensen, K., et al. (2013). Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environmental Pollution, 178, 375–380.

    Article  CAS  Google Scholar 

  161. Wang, M., Chen, W., & Peng, C. (2016a). Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere, 144, 346–351.

    CAS  Article  Google Scholar 

  162. Wang, J. L., Li, T., Liu, G. Y., Smith, J. M., & Zhao, Z. W. (2016b). Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genic aspects. Scientific Reports,. doi:10.1038/srep22028.

    Google Scholar 

  163. Wang, F. Y., Lin, X. G., & Yin, R. (2007a). Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. International Journal of Phytoremediation, 9, 345–353.

    Article  CAS  Google Scholar 

  164. Wang, A., Wang, M., Liao, Q., & He, X. (2015). Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environmental Science and Pollution Research,. doi:10.1007/s11356-015-5781-z.

    Google Scholar 

  165. Wang, Q., Zhang, J., Zhao, B., Xin, X., Zhang, C., & Zhang, H. (2014). The influence of long-term fertilization on cadmium (Cd) accumulation in soil and its uptake by crops. Environmental Science and Pollution Research, 21, 10377–10385.

    CAS  Article  Google Scholar 

  166. Wang, H., Zhao, S. C., Liu, R. L., Zhou, W., & Jin, J. Y. (2009). Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica, 47, 277–283.

    CAS  Article  Google Scholar 

  167. Wang, M., Zou, J., Duan, X., Jiang, W., & Liu, D. (2007b). Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresearch Technology, 98, 82–88.

    CAS  Article  Google Scholar 

  168. Wójcik, M., & Tukiendorf, A. (2005). Cadmium uptake, localization and detoxification in Zea mays. Biologia Plantarum, 49, 237–245.

    Article  Google Scholar 

  169. Wu, Q. T., Wei, Z. B., & Ouyang, Y. (2007). Phytoextraction of metal-contaminated soil by Sedum alfredii H: Effects of chelator and co-planting. Water, Air, and Soil Pollution, 180, 131–139.

    CAS  Article  Google Scholar 

  170. Xu, X., Liu, C., Zhao, X., Li, R., & Deng, W. (2014). Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.). Bulletin of Environmental Contamination and Toxicology, 93, 618–624.

    CAS  Article  Google Scholar 

  171. Xu, W., Lu, G., Dang, Z., Liao, C., Chen, Q., & Yi, X. (2013). Uptake and distribution of Cd in sweet maize grown on contaminated soils: A field-scale study. Bioinorganic Chemistry and Applications,. doi:10.1155/2013/959764.

    Google Scholar 

  172. Xu, W., Lu, G., Wang, R., Guo, C., Liao, C., Yi, X., & Dang, Z. (2015). The effect of pollination on Cd phytoextraction from soil by maize (Zea mays L). International Journal of Phytoremediation,. doi:10.1080/15226514.2014.1003789.

    Google Scholar 

  173. Yang, Y., Nan, Z., & Zhao, Z. (2014). Bioaccumulation and translocation of cadmium in wheat (Triticum aestivum L.) and maize (Zea mays L.) from the polluted oasis soil of Northwestern China. Chemical Speciation and Bioavailability, 26, 43–51.

    CAS  Article  Google Scholar 

  174. Zhang, H., Dang, Z., Zheng, L. C., & Yi, X. Y. (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science and Technology, 6, 249–258.

    Article  Google Scholar 

  175. Zhang, L. Y., Zhang, H. Y., Guo, W., Tian, Y. L., Chen, Z. S., & Wei, X. F. (2012). Photosynthetic responses of energy plant maize under cadmium contamination stress. Advanced Materials Research, 356, 283–286.

    Google Scholar 

  176. Zhao, Z., Xi, M., Jiang, G., Liu, X., Bai, Z., & Huang, Y. (2010). Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays L.). Journal of Hazardous Material, 181, 455–459.

    CAS  Article  Google Scholar 

  177. Zhao, Y., Yan, Z., Qin, J., & Xiao, Z. (2014). Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environmental Science and Pollution Research, 21, 7586–7595.

    CAS  Article  Google Scholar 

  178. Zhou, S., Liu, J., Xu, M., Lv, J., & Sun, N. (2015). Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Environmental Science and Pollution Research, 22, 15154–15163.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Financial support from Government College, University Faisalabad is gratefully acknowledged. Yong Sik Ok acknowledges that this work was partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2015R1A2A2A11001432; contribution: 80 %).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Rizwan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizwan, M., Ali, S., Qayyum, M.F. et al. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39, 259–277 (2017). https://doi.org/10.1007/s10653-016-9826-0

Download citation

Keywords

  • Bioremediation
  • Biochar
  • Chelating agents
  • Phytoremediation
  • Phytoextraction
  • Silicon
  • Soil amendment