Skip to main content

Advertisement

Log in

Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6–120 mg/kg) and slightly elevated As content (1–13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg0), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006–0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9–31.5 %) in the dust samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AcmeLabs (2011). Bureau Veritas Mineral Laboratories. Official website. http://acmelab.com/. Accessed 30 Sept 2015.  

  • AOAC INTERNATIONAL (2012). Appendix F: Guidelines for standard method performance reqirements. http://www.eoma.aoac.org/app_f.pdf. Accessed 10 Dec 2015.

  • ATSDR (2015). Agency for toxic substances and disease registry. Official website. http://www.atsdr.cdc.gov/csem/csem.asp?csem=10&po=4. Accessed 22 Dec 2015.

  • Barnett, M. O., & Turner, R. R. (2001). Bioaccessibility of mercury in soils. Soil and Sediment Contamination, 10(3), 301–316.

    Article  CAS  Google Scholar 

  • Bavec, Š. (2015). Geochemical investigations in Idrija urban area with emphasis on mercury. Dissertation thesis. University of Ljubljana.

  • Bavec, Š., & Gosar, M. (2016). Speciation, mobility and bioaccessibility of Hg in the polluted urban soil of Idrija (Slovenia). Geoderma. doi:10.1016/j.geoderma.2016.03.015.

  • Bavec, Š., Biester, H., & Gosar, M. (2014). Urban sediment contamination in a former Hg mining district, Idrija. Slovenia. Environmental Geochemistry and Health, 4(3), 427–439.

    Article  Google Scholar 

  • Bavec, Š., Biester, H., Gosar, M., & Grčman, H. (2015). Geochemical investigation of mercury and other elements in urban soil of Idrija (Slovenia). Journal of Geochemical Exploration, 154, 213–223. doi:10.1016/j.gexplo.2014.10.011.

    Article  CAS  Google Scholar 

  • Benčina, T. (2007). The development of environmental design in municipality of Idrija: Graduation thesis. University of Ljubljana. http://repozitorij.uni-lj.si/IzpisGradiva.php?id=38377&lang=eng. Accessed 30 Jan 2014.

  • Biester, H., Gosar, M., & Müller, G. (1999). Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemistry Exploration, 65(3), 195–204.

    Article  CAS  Google Scholar 

  • Biester, H., & Nehrke, G. (1997). Quantification of mercury in soils and sediments—acid digestion versus pyrolysis. Fresenius’ Journal of Analytical Chemistry, 358, 446–452.

    Article  CAS  Google Scholar 

  • Biester, H., & Scholz, C. (1996). Determination of mercury binding forms in soils: mercury pyrolysis versus sequential extraction. Environmental Science and Technology, 31(1), 233–239.

    Article  Google Scholar 

  • Čar, J. (1998). Mineralized rocks and ore residues in the Idrija region. In V. Miklavčič (Ed.), Proceedings of the meeting of researchers entitled: Idrija as a natural and anthropogenic laboratory, mercury as a major pollutant (pp. 10–15). Idrija: Mercury mine Idrija.

    Google Scholar 

  • Čar, J. (2010). Geological structure of the Idrija—Cerkljansko hills: Explanatory book to the geological map of the Idrija—Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana: Geološki zavod Slovenije.

    Google Scholar 

  • Čar, J., & Terpin, R. (2005). Stare žgalnice živosrebrove rude v okolici Idrije. Idrijski razgledi, 50(1), 80–105.

    Google Scholar 

  • Chattopadhyay, G., Lin, K. C. P., & Feitz, J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3), 301–307.

    Article  CAS  Google Scholar 

  • Clarkson, W. T., Magos, L., & Myers, J. G. (2003). The toxicology of mercury—current exposures and clinical manifestations. The New England Journal of Medicine, 349, 1731–1737.

    Article  CAS  Google Scholar 

  • Coufalík, P., Zvěřina, O., & Komárek, J. (2014). Determination of mercury species using thermal desorption analysis in AAS. Chemical Papers, 68(4), 427–434.

    Article  Google Scholar 

  • De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34(6), 677–687.

    Article  CAS  Google Scholar 

  • De Vos, W., Tarvainen, T., Salminen, R., Reeder, S., De Vivo, B., Demetriades, A., et al. (2006). Geochemical Atlas of Europe. Part 2: Interpretation of geochemical maps, additional tables, Figures, maps, and related publications. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Dizdarevič, T. (2001). The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ: Materials and Geoenvironment, 48(1), 56–64.

    Google Scholar 

  • Dodd, M., Rasmussen, P. E., Chénier, M., et al. (2013). Comparison of two in vitro extraction protocols for assessing metals’ bioaccessibility using dust and soil reference materials. Human and Ecological Risk Assessment: An International Journal, 19, 1014–1027.

    CAS  Google Scholar 

  • Drovenik, M., Pleničar, M., & Drovenik, F. (1980). Nastanek rudišč v SR Sloveniji. Geologija, 23(1), 1–57.

    Google Scholar 

  • EN71-3. (1995). Safety of Toys—Part 3: Specification for migration of certain elements, British Standard EN 71-3:1995. Brussels: European Committee for Standardization.

    Google Scholar 

  • EN71-3. (2002). Safety of toys—Part 3: Migration of certain elements; German version EN71-3:1994 + A1:2000 + AC:2002. Brussels: European Committee for Standardization.

    Google Scholar 

  • Fang, F., Wang, H., & Lin, Y. (2011). Spatial distribution, bioavailability, and health risk assessment of soil Hg in Wuhu urban area, China. Environmental Monitoring and Assessment, 179(1–4), 255–265.

    Article  CAS  Google Scholar 

  • Fontúrbel, E. F., Barbieri, E., Herbas, C., Barbieri, L. F., & Gardon, J. (2011). Indoor metallic pollution related to mining activity in the Bolivian Altiplano. Environmental Pollution, 159(10), 2870–2875.

    Article  Google Scholar 

  • Gosar, M., Pirc, S., Šajn, R., Bidovec, M., Mashayanov, N. R., & Sholupov, S. E. (1997). Distribution of mercury in the atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110.

    Article  CAS  Google Scholar 

  • Gosar, M., & Šajn, R. (2005). Arsenic in the environment: enrichments in the Slovenian soils. Geologija, 48(2), 253–262.

    Article  Google Scholar 

  • Gosar, M., Šajn, R., & Biester, H. (2006). Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Science of Total Environment, 369(1–3), 150–162.

    Article  CAS  Google Scholar 

  • Guney, M., Welfringer, B., de Repentigny, C., & Zagury, G. J. (2013). Children’s exposure to mercury-contaminated soils: Exposure assessment and risk characterization. Archives of Environmental Contamination and Toxicology, 65, 345–355.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1970). Chemical behaviour of mercury in aqueous media. In W. J. Hickel & W. T. Pecora (Eds.), Mercury in the environment, geological survey professional paper 713 (pp. 19–24). Washington: United States government printing office.

    Google Scholar 

  • Hunt, A., & Johnson, D. L. (2011). Differential individual particle analysis (DIPA): Applications in particulate matter characterization. Journal of Environmental Quality, 40(3), 742–750.

  • Ibanez, Y., Le Bot, B., & Glorennec, P. (2010). House-dust metal content and bioaccessibility: A review. European Journal of Mineralogy, 22(5), 629–637.

    Article  CAS  Google Scholar 

  • Kavčič, I. (1974). Kakšna je stopnja onečiščenosti zraka v Idriji. Idrijski razgledi, 9(1–2), 25–29.

    Google Scholar 

  • Kavčič, I. (2008). Živo srebro: Zgodovina idrijskega žgalništva. Idrija: Založba Bogataj.

    Google Scholar 

  • Koch, I., Moriarty, M., Sui, J., Rutter, A., Saper, R. B., & Reimer, K. J. (2013). Bioaccessibility of mercury in selected Ayurvedic medicines. Science of the Total Environment, 454–455, 9–15.

    Article  Google Scholar 

  • Kocman, D., & Horvat, M. (2010). A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmospheric Chemistry and Physics, 9(6), 1417–1426.

    Article  Google Scholar 

  • Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 92, 2038–2046.

    Article  CAS  Google Scholar 

  • Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idirja Hg mine region, Slovenia. Environmental Research, 111(1), 1–9.

    Article  CAS  Google Scholar 

  • Kolektor (2014). Offical website of the company. http://www.kolektor.com/. Accessed 31 Jan 2014.

  • Kolektor Informator (2011). Slavnostna otvoritev hotela Jožef. http://www.kolektor.si/resources/files/doc/komunitator/informator_marec11.pdf. Accessed 31 Jan 2014.

  • Kosta, L., Byrne, A. R., Zelenko, V., Stegnar, P., Dermelj, M., & Ravnik, V. (1974). Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas. Vestnik slovenskega kemijskega društva, 21, 49–76.

    CAS  Google Scholar 

  • Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39(39), 7570–7579.

    Article  CAS  Google Scholar 

  • Kurt-Karakus, B. P. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    Article  CAS  Google Scholar 

  • Lioy, P. J., Freeman, N. C. G., & Millette, J. R. (2012). Dust: A metric for use in residential and building exposure assessment and source characterisation. Environmental Health Perspectives, 110(10), 969–983.

    Article  Google Scholar 

  • Lioy, P. J., Wainman, T., & Weisel, C. A. (1993). Wipe sampler for the quantitative measurement of dust on smooth surfaces: Laboratory performance studies. Journal of Exposure Analysis and Environmental Epidemiology, 3(3), 315–330.

    CAS  Google Scholar 

  • Lisiewicz, M., Heimburger, R., & Golimowski, J. (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. The Science of the Total Environment, 263(1–3), 69–78.

    Article  CAS  Google Scholar 

  • Llewellyn, T.O. (1994). Cadmium (Materials Flow). Bureau of Mines Information Circular/1994. United States Geological Survey.

  • Merck Millipore. (2015). 108623 | Mercury ICP standard traceable to SRM from NIST Hg(NO3)2 in HNO3 2–3 % 10 mg/L Hg certipur®. https://www.merckmillipore.com/INTL/en/product/Mercury-ICP-standard,MDA_CHEM-108623. Accessed 16 Sept 2015.

  • Miler, M., & Gosar, M. (2009). Application of SEM/EDS to environmental geochemistry of heavy metals. Geologija, 52(1), 69–78.

    Article  Google Scholar 

  • Mingot, J., De Miguel, E., & Chacón, E. (2011). Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere, 84(10), 1386–1391.

    Article  CAS  Google Scholar 

  • Mlakar, I., & Čar, J. (2009). Geological map of the Idrija–Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana: Geološki zavod Slovenije.

    Google Scholar 

  • Mølhave, L., Schneider, T., Kjærgaard, S. K., Larsen, L., Norn, S., & Jørgensen, O. (2000). House dust in seven Danish offices. Atmospheric Environment, 34, 4767–4779.

    Article  Google Scholar 

  • Molina, R. M., Schaider, L. A., Donaghey, T. C., Shine, J. P., & Brain, J. D. (2013). Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc. Environmental Pollution, 182, 217–224.

    Article  CAS  Google Scholar 

  • Morawska, L., & Salthammer, T. (2003). Indoor environment: Airborne particles and settled dust. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Navarro, A., Biester, H., Mendoza, L. J., & Cardellach, E. (2006). Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environmental Geology, 49(8), 1089–1101.

    Article  CAS  Google Scholar 

  • Olujimi, O., Steiner, O., & Goessler, W. (2015). Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. Journal of African Earth Sciences, 101, 396–404.

    Article  CAS  Google Scholar 

  • Pant, P., Allen, M., Tansel, B. (2010). The role of organic carbon in facilitating mercury sorption and retention in the soil: Some field evidence from Oak Ridge, Tennessee-10391. WM2010 Conference, March 7-11, 2010, Phoenix, AZ. http://www.wmsym.org/archives/2010/pdfs/10391.pdf. Accessed 23 Dec 2015.

  • Papp, J.F. (1994). Chromium life cycle study. Bureau of Mines Information Circular/1994. United States Geological Survey.

  • Paustenbach, D., Finley, L. B., & Long, F. T. (1997). The critical role of house dust in understanding the hazards posed by contaminated soils. International Journal of Toxicology, 16, 339–362.

    Article  CAS  Google Scholar 

  • Plumlee, G. S., & Ziegler, T. L. (2003). The medical geochemistry of dusts, soils, and other earth materials. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 263–310). Amsterdam: Elsevier.

    Google Scholar 

  • Quinn, S., Sauter, P., Brunner, A., Anderson, S., McLeod, F. (2015). Taking the pain out of chromatographic peak integration. http://www.dionex.com/en-us/webdocs/77494-PO-HPLC-LPN2297-01-Chrome.pdf Accessed 18 Dec 2015.

  • Rasmussen, E. P. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Science and Spectroscopy, 49(23), 166–174.

    CAS  Google Scholar 

  • Rasmussen, E. P., Beauchemin, S., & Chénier, M. (2011). Canadian house dust study: Lead bioaccessibility and speciation. Environmental Science and Technology, 45(11), 4959–4965.

    Article  CAS  Google Scholar 

  • Rasmussen, E. P., Beauchemin, S., Nugent, M., Dugandzic, R., Lanouette, M., & Chénier, M. (2008). Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Human and Ecological Risk assessment, 14(2), 351–371.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125–140.

    Article  CAS  Google Scholar 

  • Rieuwerts, J. (2015). The elements of environmental pollution. Abingdon. New York: Routledge.

    Google Scholar 

  • Rieuwerts, S. L., Farago, M., Cikrt, M., & Bencko, V. (1999). Heavy metal concentrations in and around households near a secondary lead smelter. Environmental Monitoring and Assessment, 58, 317–335.

    Article  CAS  Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation (Longman Geochemistry Series). London: Longman Publishing Group.

    Google Scholar 

  • RSC. (2015). Royal society of chemistry. Official website. http://www.rsc.org/periodic-table/element/42/molybdenum. Accessed 22 Dec 2015.

  • Safruk, A. M., Berger, R. G., Jackson, B. J., Pinsent, C., Hair, A. T., & Sigal, E. A. (2015). The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children. Science of the Total Environment, 518–519, 545–553.

    Article  Google Scholar 

  • Šajn, R., Žibret, G., & Alijagić, J. (2012). Chemical composition of urban dusts in Slovenia. In L. B. Wouters & M. Pauwels (Eds.), Dust: Sources, environmental concerns and control (pp. 1–56). New York: Nova Science Publishers Inc.

    Google Scholar 

  • SARA GROUP. (2005). Sudbury area risk assessment Volume II. Appendix M: Indoor Dust Survey—Data Report. Final report.

  • Sigma-Aldrich. (2015). Trace metals 1—WP, proficiency testing material. http://www.sigmaaldrich.com/catalog/product/sial/pe1132?lang=en&region=SI. Accessed 16 Sept 2015.

  • Teršič, T. (2010). Environmental influences of historical small scale ore processing at Idrija area. Dissertation thesis, University of Ljubljana.

  • Teršič, T., Gosar, M., & Biester, H. (2011a). Environmental impact of ancient small-scale mercury ore processing at Pšenk on soil (Idrija area, Slovenia). Applied Geochemistry, 26(11), 1867–1876.

    Article  Google Scholar 

  • Teršič, T., Gosar, M., & Biester, H. (2011b). Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). Journal of Geochemical Exploration, 110(2), 136–145.

    Article  Google Scholar 

  • Tong, T. Y. S., & Lam, C. K. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. The Science of the Total Environment, 256(2–3), 115–123.

    Article  CAS  Google Scholar 

  • Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371(1–3), 74–81.

    Article  CAS  Google Scholar 

  • Valle, C., Santana, P. G., Augusti, R., Egreja Filho, B. F., & Windmöller, C. C. (2005). Speciation and quantification of mercury in Oxisol, Ultisol, and Spodsol from Amazon (Manuas, Brazil). Chemosphere, 58, 779–792.

    Article  Google Scholar 

  • Valle, C., Santana, P. G., & Windmöller, C. C. (2006). Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis. Chemosphere, 65, 1966–1975.

    Article  Google Scholar 

  • Ware, G. W. (2000). Reviews of environmental contamination and toxicology (Vol. 164). New York: Springer-Verlag.

    Google Scholar 

  • Welfringer, B., & Zagury, G. (2009). Evaluation of two in vitro protocols for determination of mercury bioaccessibility: Influence of mercury fractionation and soil properties. Journal of Environmental Quality, 38, 2237–2244.

    Article  CAS  Google Scholar 

  • Wessa P. (2012). Spearman Rank Correlation (v1.0.1) in Free Statistics Software (v1.1.23-r7), Office for Research Development and Education. http://www.wessa.net/rwasp_spearman.wasp/ Accessed 14 June 2015.

  • WHO. (2003). World Health Organisation. Elemental mercury and inorganic mercury compounds: Human health perspectives. http://apps.who.int/iris/bitstream/10665/42607/1/9241530502.pdf?ua=1 Accessed 3 May 2015.

  • Windmöller, C. C., Durão Júnior, A. W., de Oliviera, A., & Valle, M. C. (2015). The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicology and Environtal Safety, 112, 201–211.

    Article  Google Scholar 

  • Yang, Q., Chen, H., & Li, B. (2015). Source Identification and health risk assessment of metals in indoor dust in the vicinity of phosphorus mining, Guizhou. Archives of Environmental Contamination and Toxicology, 68(1), 20–30.

    Article  CAS  Google Scholar 

  • Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., et al. (2014). Lead and other elements in house dust of Japanese residences—source of lead and health risks due to metal exposure. Environmental Pollution, 189, 223–228.

    Article  CAS  Google Scholar 

  • Žibret, G. (2012). Impact of dust filter installation in ironworks and construction on Brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenija). Ambio, 41(3), 292–301.

    Article  Google Scholar 

  • Žibret, G., & Rokavec, D. (2010). Household dust and street sediment as an indicator of recent heavy metals in atmospheric emissions: A case study on a previously heavily contaminated area. Environmental Earth Sciences, 61(3), 443–453.

    Article  Google Scholar 

  • Zota, R. A., Schaider, A. L., Ettinger, S. A., Wright, O. R., Shine, P. J., & Spengler, D. J. (2011). Metal sources and exposures in the homes of young children living near a mining-impacted Superfund site. Journal of Exposure Science & Environmental Epidemiology, 21(5), 495–505.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The presented study was funded by the Slovenian Research Agency (ARRS) in the frame of the research programmes Groundwater and Geochemistry (P1-0020) and Mineral Resources (P1-0025), which are performed by the Geological Survey of Slovenia. Additional financial support was provided by the Slovene human resources development and scholarship fund in the frame of the Ad futura programme, which enabled a five-month-long research exchange at the Technical University of Braunschweig, Germany. The authors would also like to thank the authorities of the Idrija municipality and the staff of the Idrija Mercury mine in liquidation (Mr. Bojan Režun and Mrs. Tatjana Dizdarević) and the staff of Komunala Idrija for their support during sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Špela Bavec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavec, Š., Gosar, M., Miler, M. et al. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia). Environ Geochem Health 39, 443–465 (2017). https://doi.org/10.1007/s10653-016-9819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9819-z

Keywords