Abstract
A comprehensive geochemical investigation of potentially harmful elements (PHEs) in household dust from the town of Idrija (Slovenia), once a world-famous Hg mining town that is now seriously polluted, was performed for the first time. After aqua regia digestion, the content of mercury (Hg), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn) was measured. PHE-bearing particles were recognised and observed by scanning electron microscopy and energy-dispersive spectrometry before and after exposure to simulated stomach acid (SSA). Mercury binding forms were identified by Hg thermal desorption technique and gastric bioaccessible Hg was estimated after SSA extraction by ICP-MS. With regard to rural and urban background values for Slovenia, high Hg content (6–120 mg/kg) and slightly elevated As content (1–13 mg/kg) were found. Mercury pollution is a result of past mining and ore processing activities. Arsenic content is potentially associated with As enrichment in local soils. Four Hg binding forms were identified: all samples contained Hg bound to the dust matrix, 14 samples contained cinnabar, two samples contained metallic Hg (Hg0), and one sample assumingly contained mercury oxide. After exposure to SSA, Hg-bearing phases showed no signs of dissolution, while other PHE-bearing phases were significantly morphologically and/or chemically altered. Estimated gastric Hg bioaccessibility was low (<0.006–0.09 %), which is in accordance with identified Hg binding forms and high organic carbon content (15.9–31.5 %) in the dust samples.





Similar content being viewed by others
References
AcmeLabs (2011). Bureau Veritas Mineral Laboratories. Official website. http://acmelab.com/. Accessed 30 Sept 2015.
AOAC INTERNATIONAL (2012). Appendix F: Guidelines for standard method performance reqirements. http://www.eoma.aoac.org/app_f.pdf. Accessed 10 Dec 2015.
ATSDR (2015). Agency for toxic substances and disease registry. Official website. http://www.atsdr.cdc.gov/csem/csem.asp?csem=10&po=4. Accessed 22 Dec 2015.
Barnett, M. O., & Turner, R. R. (2001). Bioaccessibility of mercury in soils. Soil and Sediment Contamination, 10(3), 301–316.
Bavec, Š. (2015). Geochemical investigations in Idrija urban area with emphasis on mercury. Dissertation thesis. University of Ljubljana.
Bavec, Š., & Gosar, M. (2016). Speciation, mobility and bioaccessibility of Hg in the polluted urban soil of Idrija (Slovenia). Geoderma. doi:10.1016/j.geoderma.2016.03.015.
Bavec, Š., Biester, H., & Gosar, M. (2014). Urban sediment contamination in a former Hg mining district, Idrija. Slovenia. Environmental Geochemistry and Health, 4(3), 427–439.
Bavec, Š., Biester, H., Gosar, M., & Grčman, H. (2015). Geochemical investigation of mercury and other elements in urban soil of Idrija (Slovenia). Journal of Geochemical Exploration, 154, 213–223. doi:10.1016/j.gexplo.2014.10.011.
Benčina, T. (2007). The development of environmental design in municipality of Idrija: Graduation thesis. University of Ljubljana. http://repozitorij.uni-lj.si/IzpisGradiva.php?id=38377&lang=eng. Accessed 30 Jan 2014.
Biester, H., Gosar, M., & Müller, G. (1999). Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemistry Exploration, 65(3), 195–204.
Biester, H., & Nehrke, G. (1997). Quantification of mercury in soils and sediments—acid digestion versus pyrolysis. Fresenius’ Journal of Analytical Chemistry, 358, 446–452.
Biester, H., & Scholz, C. (1996). Determination of mercury binding forms in soils: mercury pyrolysis versus sequential extraction. Environmental Science and Technology, 31(1), 233–239.
Čar, J. (1998). Mineralized rocks and ore residues in the Idrija region. In V. Miklavčič (Ed.), Proceedings of the meeting of researchers entitled: Idrija as a natural and anthropogenic laboratory, mercury as a major pollutant (pp. 10–15). Idrija: Mercury mine Idrija.
Čar, J. (2010). Geological structure of the Idrija—Cerkljansko hills: Explanatory book to the geological map of the Idrija—Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana: Geološki zavod Slovenije.
Čar, J., & Terpin, R. (2005). Stare žgalnice živosrebrove rude v okolici Idrije. Idrijski razgledi, 50(1), 80–105.
Chattopadhyay, G., Lin, K. C. P., & Feitz, J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3), 301–307.
Clarkson, W. T., Magos, L., & Myers, J. G. (2003). The toxicology of mercury—current exposures and clinical manifestations. The New England Journal of Medicine, 349, 1731–1737.
Coufalík, P., Zvěřina, O., & Komárek, J. (2014). Determination of mercury species using thermal desorption analysis in AAS. Chemical Papers, 68(4), 427–434.
De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34(6), 677–687.
De Vos, W., Tarvainen, T., Salminen, R., Reeder, S., De Vivo, B., Demetriades, A., et al. (2006). Geochemical Atlas of Europe. Part 2: Interpretation of geochemical maps, additional tables, Figures, maps, and related publications. Espoo: Geological Survey of Finland.
Dizdarevič, T. (2001). The influence of mercury production in Idrija mine on the environment in the Idrija region and over a broad area. RMZ: Materials and Geoenvironment, 48(1), 56–64.
Dodd, M., Rasmussen, P. E., Chénier, M., et al. (2013). Comparison of two in vitro extraction protocols for assessing metals’ bioaccessibility using dust and soil reference materials. Human and Ecological Risk Assessment: An International Journal, 19, 1014–1027.
Drovenik, M., Pleničar, M., & Drovenik, F. (1980). Nastanek rudišč v SR Sloveniji. Geologija, 23(1), 1–57.
EN71-3. (1995). Safety of Toys—Part 3: Specification for migration of certain elements, British Standard EN 71-3:1995. Brussels: European Committee for Standardization.
EN71-3. (2002). Safety of toys—Part 3: Migration of certain elements; German version EN71-3:1994 + A1:2000 + AC:2002. Brussels: European Committee for Standardization.
Fang, F., Wang, H., & Lin, Y. (2011). Spatial distribution, bioavailability, and health risk assessment of soil Hg in Wuhu urban area, China. Environmental Monitoring and Assessment, 179(1–4), 255–265.
Fontúrbel, E. F., Barbieri, E., Herbas, C., Barbieri, L. F., & Gardon, J. (2011). Indoor metallic pollution related to mining activity in the Bolivian Altiplano. Environmental Pollution, 159(10), 2870–2875.
Gosar, M., Pirc, S., Šajn, R., Bidovec, M., Mashayanov, N. R., & Sholupov, S. E. (1997). Distribution of mercury in the atmosphere over Idrija, Slovenia. Environmental Geochemistry and Health, 19, 101–110.
Gosar, M., & Šajn, R. (2005). Arsenic in the environment: enrichments in the Slovenian soils. Geologija, 48(2), 253–262.
Gosar, M., Šajn, R., & Biester, H. (2006). Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia). Science of Total Environment, 369(1–3), 150–162.
Guney, M., Welfringer, B., de Repentigny, C., & Zagury, G. J. (2013). Children’s exposure to mercury-contaminated soils: Exposure assessment and risk characterization. Archives of Environmental Contamination and Toxicology, 65, 345–355.
Hem, J. D. (1970). Chemical behaviour of mercury in aqueous media. In W. J. Hickel & W. T. Pecora (Eds.), Mercury in the environment, geological survey professional paper 713 (pp. 19–24). Washington: United States government printing office.
Hunt, A., & Johnson, D. L. (2011). Differential individual particle analysis (DIPA): Applications in particulate matter characterization. Journal of Environmental Quality, 40(3), 742–750.
Ibanez, Y., Le Bot, B., & Glorennec, P. (2010). House-dust metal content and bioaccessibility: A review. European Journal of Mineralogy, 22(5), 629–637.
Kavčič, I. (1974). Kakšna je stopnja onečiščenosti zraka v Idriji. Idrijski razgledi, 9(1–2), 25–29.
Kavčič, I. (2008). Živo srebro: Zgodovina idrijskega žgalništva. Idrija: Založba Bogataj.
Koch, I., Moriarty, M., Sui, J., Rutter, A., Saper, R. B., & Reimer, K. J. (2013). Bioaccessibility of mercury in selected Ayurvedic medicines. Science of the Total Environment, 454–455, 9–15.
Kocman, D., & Horvat, M. (2010). A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmospheric Chemistry and Physics, 9(6), 1417–1426.
Kocman, D., & Horvat, M. (2011). Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management, 92, 2038–2046.
Kocman, D., Vreča, P., Fajon, V., & Horvat, M. (2011). Atmospheric distribution and deposition of mercury in the Idirja Hg mine region, Slovenia. Environmental Research, 111(1), 1–9.
Kolektor (2014). Offical website of the company. http://www.kolektor.com/. Accessed 31 Jan 2014.
Kolektor Informator (2011). Slavnostna otvoritev hotela Jožef. http://www.kolektor.si/resources/files/doc/komunitator/informator_marec11.pdf. Accessed 31 Jan 2014.
Kosta, L., Byrne, A. R., Zelenko, V., Stegnar, P., Dermelj, M., & Ravnik, V. (1974). Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas. Vestnik slovenskega kemijskega društva, 21, 49–76.
Kotnik, J., Horvat, M., & Dizdarevič, T. (2005). Current and past mercury distribution in air over the Idrija Hg mine region, Slovenia. Atmospheric Environment, 39(39), 7570–7579.
Kurt-Karakus, B. P. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.
Lioy, P. J., Freeman, N. C. G., & Millette, J. R. (2012). Dust: A metric for use in residential and building exposure assessment and source characterisation. Environmental Health Perspectives, 110(10), 969–983.
Lioy, P. J., Wainman, T., & Weisel, C. A. (1993). Wipe sampler for the quantitative measurement of dust on smooth surfaces: Laboratory performance studies. Journal of Exposure Analysis and Environmental Epidemiology, 3(3), 315–330.
Lisiewicz, M., Heimburger, R., & Golimowski, J. (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. The Science of the Total Environment, 263(1–3), 69–78.
Llewellyn, T.O. (1994). Cadmium (Materials Flow). Bureau of Mines Information Circular/1994. United States Geological Survey.
Merck Millipore. (2015). 108623 | Mercury ICP standard traceable to SRM from NIST Hg(NO3)2 in HNO3 2–3 % 10 mg/L Hg certipur®. https://www.merckmillipore.com/INTL/en/product/Mercury-ICP-standard,MDA_CHEM-108623. Accessed 16 Sept 2015.
Miler, M., & Gosar, M. (2009). Application of SEM/EDS to environmental geochemistry of heavy metals. Geologija, 52(1), 69–78.
Mingot, J., De Miguel, E., & Chacón, E. (2011). Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): A three-method comparison and implications for risk assessment. Chemosphere, 84(10), 1386–1391.
Mlakar, I., & Čar, J. (2009). Geological map of the Idrija–Cerkljansko hills between Stopnik and Rovte 1:25.000. Ljubljana: Geološki zavod Slovenije.
Mølhave, L., Schneider, T., Kjærgaard, S. K., Larsen, L., Norn, S., & Jørgensen, O. (2000). House dust in seven Danish offices. Atmospheric Environment, 34, 4767–4779.
Molina, R. M., Schaider, L. A., Donaghey, T. C., Shine, J. P., & Brain, J. D. (2013). Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc. Environmental Pollution, 182, 217–224.
Morawska, L., & Salthammer, T. (2003). Indoor environment: Airborne particles and settled dust. Weinheim: Wiley-VCH.
Navarro, A., Biester, H., Mendoza, L. J., & Cardellach, E. (2006). Mercury speciation and mobilization in contaminated soils of the Valle del Azogue Hg mine (SE, Spain). Environmental Geology, 49(8), 1089–1101.
Olujimi, O., Steiner, O., & Goessler, W. (2015). Pollution indexing and health risk assessments of trace elements in indoor dusts from classrooms, living rooms and offices in Ogun State, Nigeria. Journal of African Earth Sciences, 101, 396–404.
Pant, P., Allen, M., Tansel, B. (2010). The role of organic carbon in facilitating mercury sorption and retention in the soil: Some field evidence from Oak Ridge, Tennessee-10391. WM2010 Conference, March 7-11, 2010, Phoenix, AZ. http://www.wmsym.org/archives/2010/pdfs/10391.pdf. Accessed 23 Dec 2015.
Papp, J.F. (1994). Chromium life cycle study. Bureau of Mines Information Circular/1994. United States Geological Survey.
Paustenbach, D., Finley, L. B., & Long, F. T. (1997). The critical role of house dust in understanding the hazards posed by contaminated soils. International Journal of Toxicology, 16, 339–362.
Plumlee, G. S., & Ziegler, T. L. (2003). The medical geochemistry of dusts, soils, and other earth materials. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 263–310). Amsterdam: Elsevier.
Quinn, S., Sauter, P., Brunner, A., Anderson, S., McLeod, F. (2015). Taking the pain out of chromatographic peak integration. http://www.dionex.com/en-us/webdocs/77494-PO-HPLC-LPN2297-01-Chrome.pdf Accessed 18 Dec 2015.
Rasmussen, E. P. (2004). Can metal concentrations in indoor dust be predicted from soil geochemistry? Canadian Journal of Analytical Science and Spectroscopy, 49(23), 166–174.
Rasmussen, E. P., Beauchemin, S., & Chénier, M. (2011). Canadian house dust study: Lead bioaccessibility and speciation. Environmental Science and Technology, 45(11), 4959–4965.
Rasmussen, E. P., Beauchemin, S., Nugent, M., Dugandzic, R., Lanouette, M., & Chénier, M. (2008). Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Human and Ecological Risk assessment, 14(2), 351–371.
Rasmussen, P. E., Subramanian, K. S., & Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125–140.
Rieuwerts, J. (2015). The elements of environmental pollution. Abingdon. New York: Routledge.
Rieuwerts, S. L., Farago, M., Cikrt, M., & Bencko, V. (1999). Heavy metal concentrations in and around households near a secondary lead smelter. Environmental Monitoring and Assessment, 58, 317–335.
Rollinson, H. R. (1993). Using geochemical data: Evaluation, presentation, interpretation (Longman Geochemistry Series). London: Longman Publishing Group.
RSC. (2015). Royal society of chemistry. Official website. http://www.rsc.org/periodic-table/element/42/molybdenum. Accessed 22 Dec 2015.
Safruk, A. M., Berger, R. G., Jackson, B. J., Pinsent, C., Hair, A. T., & Sigal, E. A. (2015). The bioaccessibility of soil-based mercury as determined by physiological based extraction tests and human biomonitoring in children. Science of the Total Environment, 518–519, 545–553.
Šajn, R., Žibret, G., & Alijagić, J. (2012). Chemical composition of urban dusts in Slovenia. In L. B. Wouters & M. Pauwels (Eds.), Dust: Sources, environmental concerns and control (pp. 1–56). New York: Nova Science Publishers Inc.
SARA GROUP. (2005). Sudbury area risk assessment Volume II. Appendix M: Indoor Dust Survey—Data Report. Final report.
Sigma-Aldrich. (2015). Trace metals 1—WP, proficiency testing material. http://www.sigmaaldrich.com/catalog/product/sial/pe1132?lang=en®ion=SI. Accessed 16 Sept 2015.
Teršič, T. (2010). Environmental influences of historical small scale ore processing at Idrija area. Dissertation thesis, University of Ljubljana.
Teršič, T., Gosar, M., & Biester, H. (2011a). Environmental impact of ancient small-scale mercury ore processing at Pšenk on soil (Idrija area, Slovenia). Applied Geochemistry, 26(11), 1867–1876.
Teršič, T., Gosar, M., & Biester, H. (2011b). Distribution and speciation of mercury in soil in the area of an ancient mercury ore roasting site, Frbejžene trate (Idrija area, Slovenia). Journal of Geochemical Exploration, 110(2), 136–145.
Tong, T. Y. S., & Lam, C. K. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. The Science of the Total Environment, 256(2–3), 115–123.
Turner, A., & Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371(1–3), 74–81.
Valle, C., Santana, P. G., Augusti, R., Egreja Filho, B. F., & Windmöller, C. C. (2005). Speciation and quantification of mercury in Oxisol, Ultisol, and Spodsol from Amazon (Manuas, Brazil). Chemosphere, 58, 779–792.
Valle, C., Santana, P. G., & Windmöller, C. C. (2006). Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis. Chemosphere, 65, 1966–1975.
Ware, G. W. (2000). Reviews of environmental contamination and toxicology (Vol. 164). New York: Springer-Verlag.
Welfringer, B., & Zagury, G. (2009). Evaluation of two in vitro protocols for determination of mercury bioaccessibility: Influence of mercury fractionation and soil properties. Journal of Environmental Quality, 38, 2237–2244.
Wessa P. (2012). Spearman Rank Correlation (v1.0.1) in Free Statistics Software (v1.1.23-r7), Office for Research Development and Education. http://www.wessa.net/rwasp_spearman.wasp/ Accessed 14 June 2015.
WHO. (2003). World Health Organisation. Elemental mercury and inorganic mercury compounds: Human health perspectives. http://apps.who.int/iris/bitstream/10665/42607/1/9241530502.pdf?ua=1 Accessed 3 May 2015.
Windmöller, C. C., Durão Júnior, A. W., de Oliviera, A., & Valle, M. C. (2015). The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicology and Environtal Safety, 112, 201–211.
Yang, Q., Chen, H., & Li, B. (2015). Source Identification and health risk assessment of metals in indoor dust in the vicinity of phosphorus mining, Guizhou. Archives of Environmental Contamination and Toxicology, 68(1), 20–30.
Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., et al. (2014). Lead and other elements in house dust of Japanese residences—source of lead and health risks due to metal exposure. Environmental Pollution, 189, 223–228.
Žibret, G. (2012). Impact of dust filter installation in ironworks and construction on Brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenija). Ambio, 41(3), 292–301.
Žibret, G., & Rokavec, D. (2010). Household dust and street sediment as an indicator of recent heavy metals in atmospheric emissions: A case study on a previously heavily contaminated area. Environmental Earth Sciences, 61(3), 443–453.
Zota, R. A., Schaider, A. L., Ettinger, S. A., Wright, O. R., Shine, P. J., & Spengler, D. J. (2011). Metal sources and exposures in the homes of young children living near a mining-impacted Superfund site. Journal of Exposure Science & Environmental Epidemiology, 21(5), 495–505.
Acknowledgments
The presented study was funded by the Slovenian Research Agency (ARRS) in the frame of the research programmes Groundwater and Geochemistry (P1-0020) and Mineral Resources (P1-0025), which are performed by the Geological Survey of Slovenia. Additional financial support was provided by the Slovene human resources development and scholarship fund in the frame of the Ad futura programme, which enabled a five-month-long research exchange at the Technical University of Braunschweig, Germany. The authors would also like to thank the authorities of the Idrija municipality and the staff of the Idrija Mercury mine in liquidation (Mr. Bojan Režun and Mrs. Tatjana Dizdarević) and the staff of Komunala Idrija for their support during sampling.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bavec, Š., Gosar, M., Miler, M. et al. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia). Environ Geochem Health 39, 443–465 (2017). https://doi.org/10.1007/s10653-016-9819-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10653-016-9819-z


