Environmental Geochemistry and Health

, Volume 39, Issue 1, pp 43–62 | Cite as

Human health risks in an old gold mining area with circum-neutral drainage, central Portugal

  • P. C. S. CarvalhoEmail author
  • A. M. R. Neiva
  • M. M. V. G. Silva
  • A. C. T. Santos
Original Paper


The former mine of Escádia Grande was active at the middle of 1900 and was exploited for Au and Ag. The mineralized quartz veins consist mainly of quartz, arsenopyrite, pyrite, rare chalcopyrite, galena, sphalerite, gold and argentite. The mine dumps and tailings were deposited close to a stream, and there is a river beach downstream used for recreational proposes. Two villages are also located close to the old mining area. Mine wastes contained up to 8090 mg/kg of As and 70.1 mg/kg of Sb. The waters of the stream that cross the mining area have circum-neutral pH values and contained elevated concentrations of As reaching up to 284 µg/L. However, geochemical speciation modeling (Phreeq C) revealed that As was mainly present as As (V). Arsenic concentrations in waters are attenuated throughout the stream, mainly by the iron-(hydro)-oxides adsorption upstream. However, at 2 km downstream of mine wastes in the river beach, the waters still exceeded 10 µg/L of As, the drinking water limit. The waters also have NO2 , Cu and Cd concentrations higher than drinking water limit. The stream sediments have As concentrations up to 45 times higher (3140 mg/kg) than the limit of the sediment guideline values of NWQMS (2000). The maximum arsenic concentrations in soils are also up to 27 times higher (5940 mg/kg) than the maximum concentrations in streams from FOREGS Geochemical Atlas of Europe. The use of river beach for recreational purposes causes cancer risk (4.48 × 10−6) higher than USEPA limit, mainly due to the arsenic exposure. Even for recreational purposes, stream sediments and soils in the old mining area have high non-carcinogenic effects (2.76 and 4.78, respectively) for children, also related to the arsenic exposure mainly by the ingestion pathway, and the risk is unacceptable according to the limits of USEPA. Moreover, the cancer risk resulting from exposure of adults to arsenic in soils also has unacceptable non-cancer risk (1.13). Arsenic is the main trace element that causes a human health concern in the Escádia Grande mining area.


Circum-neutral drainage Arsenic contamination Old Portuguese gold mine Human health risks 



Thanks are due to Prof. J. F. C. Mendes for the determination of organic matter and grain size distribution in stream sediments and soils, M. Blanco for the preparation of samples for X-ray diffraction (XRD), C. Maia for XRD diagrams and Parish Council of Alvares, Góis for providing the number of river beach users. Some financial support was provided by the Project UID/GEO/04035/2015. We are grateful to two anonymous reviewers for their helpful comments that enable us to improve this manuscript.


  1. Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: health effects, mechanisms of actions, and research issues. Environmental Health Perspectives, 107(7), 593–597.CrossRefGoogle Scholar
  2. Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2, A geochemical assessment model for environmental systems, report EPA/600/3-91/0-21. Athens, GA: USEPA.Google Scholar
  3. Armstrong, C. W., et al. (1984). Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Archives of Environmental Health, 39(4), 276–279.CrossRefGoogle Scholar
  4. ATSDR. (2005). U.S. Agency for Toxic Substances and Diseases Registry. “Toxicological Profile for Arsenic.”
  5. Blowes, D. W., Ptacek, C. Y., Jambor, J. L. & Weisener, C. G. (2005). The geochemistry of acid mine drainage. In B. S. Lollar (Ed.). Environmental geochemistry. Treatise on geochemistry (Vol. 9, pp. 149–203). Oxford: Elsevier-PergamonGoogle Scholar
  6. Brunet J. F., Coste B. (2000). Bibliographie préliminaire à la gestion des DMA de Rosia Poieni (Roumanie).Rap. BRGM RP50626-FR, 116 p.Google Scholar
  7. Candeias, C., Ferreira da Silva, E., Ávila, P. F., & Teixeira, J. P. (2014). Identifying sources and assessing potential risk of exposure to heavy metals and hazardous materials in mining areas: The case study of Panasqueira mine (Central Portugal) as an example. Geosciences, 4, 240–268.CrossRefGoogle Scholar
  8. Carvalho, J. H. (1988). Geological mapping of the area surrounding the Escádia Grande Mine (in portuguese). DGGM Internal report.Google Scholar
  9. Carvalho, P. C. S., Neiva, A. M. R., Silva, M. M. V. G., & Ferreira da Silva, E. A. (2014). Geochemical comparison of waters and stream sediments close to abandoned Sb–Au and As–Au mining areas, northern Portugal. Chemie der Erde, 74, 267–283.CrossRefGoogle Scholar
  10. Cerveira, A. (1947). Notas sobre as minas de ouro da Serra da Louzã. Separata do boletim da sociedade geológica de Portugal, 3(IV), 5–15.Google Scholar
  11. Cidu, R., Biddau, R., Dore, E., Vacca, A., & Marini, L. (2014). Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Science of the Total Environment, 497–498, 319–331.CrossRefGoogle Scholar
  12. Cogema. (1989). Relatório do 2º semestre de 1989. Zone Pampiluosa da Serra (Escadia Grande). Geochimie Sol, resultats d´analyses. Cogema.Google Scholar
  13. Cohen, S. M., & Arnold, L. L. (2011). Chemical carcinogenesis. Toxicological Sciences, 120(S1), S76–S92.CrossRefGoogle Scholar
  14. Courtin-Nomade, A., Grosbois, C., Marcus, M. A., Fakra, S. C., Beny, J. M., & Foster, A. L. (2009). The weathering of a sulfide orebody: speciation and fate of some potential contaminants. The Canadian Mineralogist, 47(3), 493–508.CrossRefGoogle Scholar
  15. Craw, D., Falconer, D., & Youngson, J. H. (2003). Environmental arsenopyrite stability and dissolution: Theory, experiment and field observations. Chemical Geology, 199, 71–82.CrossRefGoogle Scholar
  16. Da Pelo, S., Musu, E., Cidu, R., Frau, F., & Lattanzi, P. (2009). Potential release of toxic elements from rocks and mine wastes at the Furtei gold mine (Sardinia, Italy). Journal Geochemical Exploration, 100, 142–152.CrossRefGoogle Scholar
  17. Desbarats, A. J., Parsons, M. B., Percival, J. B., Kwong, Y. T. J., Beauchemin, S. (2010). Characterization of the flow and chemistry of adit drainage, Bralorne Mine, Bralorne, B.C. Geol. Surv. Canada, Open File 6345, Ottawa.Google Scholar
  18. Haffert, L., & Craw, D. (2010). Geochemical processes influencing arsenic mobility at Bullendale historic gold mine, Otago, New Zealand. New Zealand Journal of Geology and Geophysics, 53(2–3), 129–142.CrossRefGoogle Scholar
  19. Herbel, M., & Fendorf, S. (2006). Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228(1–3), 16–32.CrossRefGoogle Scholar
  20. International Agency for Research on Cancer (IARC). (2012). IARC monographs on the evaluation of the carcinogenic risks to humans. Arsenic, metals, fibers and dusts (Vol. 100 C). Lyon: IARC.Google Scholar
  21. Kabata Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton, FL: RC Press.Google Scholar
  22. Klimko, T., Lalinská, B., Majzlan, J., Kučerová, G., & Paul, C. (2011). Chemical composition of weathering products in neutral and acidic mine tailings from stibnite exploitation in Slovakia. Journal of Geosciences, 56, 327–340.Google Scholar
  23. Kwong, Y. T. J., Roots, J. F., Roach, P., & Kettley, W. (1997). Post-mine metal transport and attenuation in the Keno Hill mining district, central Yukon, Canada. Environmental Geology, 30(1/2), 98–107.CrossRefGoogle Scholar
  24. Kwong, Y. T. J., Swerhone, G. W., & Lawrence, J. R. (2003). Galvanic sulphide oxidation as a metal-leaching mechanism and its environmental implications. The Geological Society of London, 3(4), 337–343.Google Scholar
  25. Lee, J. S., Chon, H. T., & Kim, K. W. (2005). Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environmental Geochemistry and Health, 27, 185–191.CrossRefGoogle Scholar
  26. Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L., & Lam, W. L. (2011). Arsenic exposure and the induction of human cancers. Journal of Toxicology.Google Scholar
  27. Meireles, C., Sequeira, A. J. D., Castro, P., & Ferreira, N. (2013). New data on the lithostratigraphy of beiras Group (Schist Greywacke complex) in the region of Góis-Arganil-Pampilhosa da Serra (Central Portugal). Cadernos do Laboratorio Xeolóxico de Laxe, 37, 105–124.Google Scholar
  28. Milham, L., & Craw, D. (2009). Antimony mobilization through two contrasting gold ore processing systems, New Zealand. Mine Water Enviroment, 28, 136–145.CrossRefGoogle Scholar
  29. Mudgal, V., Madaan, N., Mudgal, A., Singh, R. B., & Mishra, S. (2010). Effect of toxic metals on human health. Open Nutraceuticals Journal, 3, 94–99.Google Scholar
  30. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soils analysis. Part 3. Chemical methods. Soil Science Society of America Book Series Number 5 (pp. 961–1010). Madison, WI: American Society of Agronomy.Google Scholar
  31. Nordstrom, K. (2011). Mine waters: Acidic to circumneutral. Elements, 7(6), 393–398.CrossRefGoogle Scholar
  32. Nordstrom D. K., Wilde, F. D. (2005). Reduction–oxidation potential-electrode method (ver.1.2): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A6., sec. 6.5, September 2005. Accessed 3 Aug 2015.
  33. NWQMS (National Water Quality Management Strategy). (2000). Australian and New Zealand Guidelines for Fresh Marine Water Quality. Paper No. 4. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra.Google Scholar
  34. Parkhurst, D. L., Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)—A computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Invest. Rep., 99–4259 (online version).Google Scholar
  35. Pereira, V. (1984). “Projecto Góis” Cartografia Geológica. Divisão de Prospecção de Minérios Metálicos. Direcção-Geral de Geologia e Minas. Serviços de Fomento Mineiro e Indústria Extractiva. LNEG. Lisboa.Google Scholar
  36. Plumlee, G. S., Smith, K. S., Montour, M. R., Ficklin, W. H., & Mosier, E. L. (1999). Geologic controls on the composition of natural waters and mine waters draining diverse mineral-deposit types. In L. H. Filipek, & G. S. Plumlee (Eds.). The environmental geochemistry of mineral deposits, part B: Case studies and research topics: reviews in economic geology (Vol. 6B, pp. 373–432).Google Scholar
  37. Portuguese Decree 236 (1998). Portuguese legislation on water quality. Diário da República I-A, 3676–3722.Google Scholar
  38. Portuguese Decree 306 (2007). Portuguese legislation on water quality. Diário da República I-A, 5747–5765.Google Scholar
  39. Salminen, R., Batista, M.J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O'Connor, P.J., Olsson, S.A., Ottesen, R.T., Petersell, V., Plant, J.A., Reeder, S., Salpeteteur, I., Sandstrom, H., Siewers, U., Steenfelt, A., & Tarvainen, T. (2005). FOREGS geochemical atlas of Europe. Methodology and maps. Part 1 (526 pp.) and Part 2 (690 pp.).Google Scholar
  40. Santos Oliveira, J. M. (1991). The role of lithogeochemistry in the delineation of Au and Sn-W mineralization in schist terrains of the Gois region (Central Portugal). Estudos, Notas e Trabalhos, Direcção Geral de Geologia e Minas, 33, 9–19.Google Scholar
  41. Schwertmann, U. (1991). Solubility and dissolution of iron oxides. Plant and Soil, 130, 1–25.CrossRefGoogle Scholar
  42. Sequeira, A. J. D., & Sousa, M. B. (1991). O Grupo das Beiras (Complexo Xisto-Grauváquico) da região de Coimbra-Lousã. Memórias e Notícias Publicacoes do Museu e Laboratorio Mineralogico e Geologico da Universidade de Coimbra, 112, 1–13.Google Scholar
  43. Silva, M. M. V. G., Lopes, S. P., & Gomes, E. C. (2014). Geochemistry and behavior of REE in stream sediments close to an old Sn-W mine, Ribeira, Northeast Portugal. Chemie der Erde, 74, 545–555.CrossRefGoogle Scholar
  44. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.CrossRefGoogle Scholar
  45. Smith, K. S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In G. S. Plumlee & M. J. Logsdon (Eds.). The environmental geochemistry of mineral deposits, part A: Society of economic geologists, reviews in economic geology (Vol. 6A, pp. 161–182).Google Scholar
  46. SNIRH. (2015). Sistema Nacional de Informação de Recursos Hídricos.Google Scholar
  47. Taylor, M. P., Mackay, A. K., Hudson-Edwards, K. A., & Holz, E. (2010). Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 25, 841–855.CrossRefGoogle Scholar
  48. Uede, K., & Furukawa, F. (2003). Skin manifestations in acute arsenic poisoning from the Wakayama curry-poisoning incident. British Journal of Dermatology, 149(4), 757–762.CrossRefGoogle Scholar
  49. USEPA (United States Environmental Protection Agency). (2001a). Risk assessment guidance for superfund: Volume III—Part A, process for conducting probabilistic risk assessment. Washington, DC: US Environmental Protection Agency [EPA 540-R-02-002].Google Scholar
  50. USEPA (United States Environmental Protection Agency). (2001b). Science Policy Council. Guidance on cumulative risk assessment. Part 1. Washington, DC: US Environmental Protection Agency.Google Scholar
  51. USEPA (United States Environmental Protection Agency). (2002). Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. Office of Emergency and Remedial Response. December. Publication 9285.6-10.Google Scholar
  52. USEPA (United States Environmental Protection Agency). (2010). Toxicological review of inorganic arsenic. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  53. USEPA (United States Environmental Protection Agency). (2011). Exposure factors handbook 2011 edition (Final).
  54. Vink, B. W. (1996). Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams. Chemical Geology, 130, 21–30.CrossRefGoogle Scholar
  55. Wang, S., & Mulligan, C. N. (2006). Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environmental Geochemistry and Health, 28, 197–214.CrossRefGoogle Scholar
  56. WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva: WHO.Google Scholar
  57. Zhang, L., Mo, Z., Qin, J., Wei, Q. L. Y., Ma, S., Xiong, Y., et al. (2015). Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment, 530–531, 163–170.CrossRefGoogle Scholar
  58. Zhuang, P., Lu, H., Zhian, L., Zou, B., & Mcbride, M. B. (2014). Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PLoS One, 9(4), e94484.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • P. C. S. Carvalho
    • 1
    • 3
    Email author
  • A. M. R. Neiva
    • 1
    • 2
  • M. M. V. G. Silva
    • 2
    • 3
  • A. C. T. Santos
    • 2
  1. 1.GEOBIOTEC, Department of GeosciencesUniversity of AveiroAveiroPortugal
  2. 2.Department of Earth SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.CEMUCUniversity of CoimbraCoimbraPortugal

Personalised recommendations