Skip to main content


Log in

Sources of organic pollution in particulate matter and soil of Silesian Agglomeration (Poland): evidence from geochemical markers

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript


The exact input of particular sources to polycyclic aromatic hydrocarbons (PAHs) concentrations in urban and industrial agglomerations is still not well recognized. The major breakthrough is possible using geochemical markers. In the air aerosol and soil samples from areas located in the direct influence of industry/traffic in Silesian Agglomeration (Poland), PAHs and other organic compounds were analyzed, including geochemical markers (biomarkers) and polar compounds from fossil fuels and biomass. Gas chromatography (GC-FID) and gas chromatography–mass spectrometry (GC–MS) were applied to investigate the composition of particulate matter and soil extracts. The results suggest that the predominant source of PAHs is fossil fuel. The presence and distribution of steranes, pentacyclic triterpenoids (i.e., hopanes and moretanes) and alkyl PAHs point to traffic emissions and fossil fuel combustion, mainly bituminous coal for power and heat purposes, as the main source of PAHs in the region. Moreover, the presence of fossil fuel biomarker in particulate matter and soil extracts from a rural site, previously considered to be free of organic pollution, requires a cautious interpretation for PAHs results. Apart from the fossil fuel, also other sources of contamination were identified in particulate matter extracts by their markers: phenols and levoglucosan for biomass and diisopropylnaphthalenes for printing materials combustion. The absence of polar biomass combustion indicators in soil extracts might be related to their higher reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others



Ambient particulate matter


Diagnostic ratio


A4 highway


APM collected on A4 highway


Dust collected on pavement


Particulate matter from coal-fired district heating plants


Particulate matter from wood-fired domestic heating boilers


Particulate matter from automobile diesel engines




APM collected in Radlin


Sample of soil collected in Radlin


Soil or dust collected on a pavement


Solid phase extraction




APM collected in Zabrze


Sample of soil collected in Zabrze


Złoty Potok


APM collected in Złoty Potok


Sample of soil collected in Złoty Potok


  • Akyüz, M., & Çabuk, H. (2010). Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Environmental Science and Technology, 408, 5550–5558.

    Google Scholar 

  • Bi, X., Simoneit, B. R. T., Sheng, G., & Fu, J. (2008). Characterization of molecular markers in smoke from residential coal combustion in China. Fuel, 87(1), 112–119.

    Article  CAS  Google Scholar 

  • Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2–15.

    Article  CAS  Google Scholar 

  • Calvert, J. G., Atkinson, R., Becker, K. H., Kamens, R. M., Seinfeld, J. H., Wallington, T. J., & Yarwood, G. (2002). The mechanisms of atmospheric oxidation of aromatic hydrocarbons (pp. 346–397). New York: Oxford University Press.

    Google Scholar 

  • Cébron, A., Faure, P., Lorgeoux, C., Ouvrard, S., & Leyval, C. (2013). Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation. Environmental Pollution, 177, 98–105.

    Article  Google Scholar 

  • Chulalaksananukul, S., Gadd, G. M., Sangvanich, P., Sihanonth, P., Piapukiew, J., & Vangnai, A. S. (2006). Biodegradation of benzo(a)pyrene by a newly isolated Fusarium sp. FEMS Microbiology Letters, 262(1), 99–106.

    Article  CAS  Google Scholar 

  • Cotrim da Cunha, L., Serve, L., Gadel, F., & Blazi, J.-L. (2001). Lignin-derived phenolic compounds in the particulate organic matter of a French Mediterranean river: Seasonal and spatial variations. Organic Geochemistry, 32(2), 305–320.

    Article  Google Scholar 

  • Del Sienra, M. R., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75(4), 267–281.

    Article  CAS  Google Scholar 

  • Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walker, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region. Environmental Science and Technology, 34(21), 4635–4640.

    Article  CAS  Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., & Eglington, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272(5650), 216–222.

    Article  CAS  Google Scholar 

  • Dvorská, A., Lammel, G., & Klánová, J. (2011). Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45(2), 420–427.

    Article  Google Scholar 

  • EC. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.

  • Fabbri, D., Torri, C., Simoneit, B. R. T., Marynowski, L., Rushdi, A. I., & Fabiańska, M. J. (2009). Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmospheric Environment, 43(14), 2286–2295.

    Article  CAS  Google Scholar 

  • Fabiańska, M. J., Ćmiel, S. R., & Misz-Kennan, M. (2013). Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seam of the Zaleskie Beds (Poland). International Journal of Coal Geology, 107, 96–111.

    Article  Google Scholar 

  • Fabiańska, M. J., & Danielowska-Smołka, D. (2012). Biomarker compounds in ash from coal combustion in domestic furnaces (Upper Silesia Coal Basin, Poland). Fuel, 102, 333–344.

    Article  Google Scholar 

  • Faure, P., Mansuy-Huault, L., & Su, X. (2007). Alkanes and hopanes for pollution source apportionment in coking plant soils. Environmental Chemistry Letters, 5(1), 41–46.

    Article  CAS  Google Scholar 

  • Galarneau, E. (2008). Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment, 42(35), 8139–8149.

    Article  CAS  Google Scholar 

  • George, S. C., Volk, H., Romero-Sarmiento, M.-F., Dutkiewicz, A., & Mossman, D. J. (2010). Diisopropyl naphthalenes: Environmental contaminants of increasing importance for organic geochemical studies. Organic Geochemistry, 41(9), 901–904.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30(3), 825–832.

    Article  CAS  Google Scholar 

  • Hatcher, P. G., & Clifford, D. J. (1997). The organic geochemistry of coal: From plant materials to coal. Organic Geochemistry, 27(5–6), 251–274.

    Article  CAS  Google Scholar 

  • Hien, T. T., Thanh, L. T., Kameda, T., Takenaka, N., & Bandow, H. (2007). Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmospheric Environment, 41(8), 1575–1586.

    Article  CAS  Google Scholar 

  • Hunt, J. M. (1996). Petroleum geochemistry and geology (2nd ed.). New York: Freeman and Co.

    Google Scholar 

  • Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494.

    Article  CAS  Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29(4), 533–542.

    Article  CAS  Google Scholar 

  • Klejnowski, K., Kozielska, B., Krasa, A., & Rogula-Kozłowska, W. (2010). Polycyclic aromatic hydrocarbons in PM1, PM2.5, PM10 and TSP in the Upper Silesian Agglomeration, Poland. Archives of Environmental Protection, 36(2), 65–72.

    CAS  Google Scholar 

  • Kotarba, M. J., & Clayton, J. L. (2003). A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. International Journal of Coal Geology, 55(2–4), 73–94.

    Article  CAS  Google Scholar 

  • Kozielska, B., Rogula-Kozłowska, W., & Klejnowski, K. (2015). Selected organic compounds in fine particulate matter at the regional background, urban background and urban traffic points in Silesia (Poland). International Journal of Environmental Research, 9(2), 575–584.

    CAS  Google Scholar 

  • Kruge, M. A. (2000). Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds. International Journal of Coal Geology, 43(1–4), 27–51.

    Article  CAS  Google Scholar 

  • Lakhani, A. (2012). Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra India. The Scientific World Journal, 2012, 1–10.

    Article  Google Scholar 

  • Masiol, M., Formenton, G., Pasqualetto, A., & Pavoni, B. (2013). Seasonal trends and spatial variations of PM10-bounded polycyclic aromatic hydrocarbons in Veneto Region, Northeast Italy. Atmospheric Environment, 79, 811–821.

    Article  CAS  Google Scholar 

  • Miguel, A. H., Kirchstetter, T. W., Harley, R. A., & Hering, S. V. (1998). On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environmental Science and Technology, 32(4), 450–455.

    Article  CAS  Google Scholar 

  • Mostert, M. M. R., Ayoko, G. A., & Kokot, S. (2010). Application of chemometrics to analysis of soil pollutants. TrAC: Trends in Analytical Chemistry, 29(5), 430–445.

    CAS  Google Scholar 

  • Mu, L., Peng, L., Liu, X., Song, C., Bai, H., Zhang, J., et al. (2014). Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants. Atmospheric Environment, 83, 202–210.

    Article  CAS  Google Scholar 

  • Oros, D. R., Abas, M. R., Omar, N. Y. M. J., Rahman, N. A., & Simoneit, B. R. T. (2006). Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses. Applied Geochemistry, 21(6), 919–940.

    Article  CAS  Google Scholar 

  • Oros, D. R., & Simoneit, B. R. T. (2000). Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79(5), 515–536.

    Article  CAS  Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide. Biomarkers and isotopes in petroleum exploration and earth history: Cambridge University Press.

    Google Scholar 

  • Philp, R. P. (1985). Fossil fuel biomarkers. Application and spectra. Amsterdam: Elsevier.

    Google Scholar 

  • Radke, M. (1988). Organic geochemistry of aromatic hydrocarbons. Advances in Petroleum Geochemistry, 2, 141–207.

    Google Scholar 

  • Radke, M., Vriend, S. P., & Ramanampisoa, L. R. (2000). Alkyldibenzofurans in terrestrial rocks: Influence of organic facies and maturation. Geochimica at Cosmochimica Acta, 64, 275–286.

    Article  CAS  Google Scholar 

  • Rajput, N., & Lakhani, A. (2012). Particle associated polycyclic aromatic hydrocarbons (PAHs) in urban air of Agra. Polycyclic Aromatic Compounds, 32(1), 48–60.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.

    Article  CAS  Google Scholar 

  • Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., & Villenave, E. (2012). Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Science of the Total Environment, 437, 297–305.

    Article  CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science and Technology, 27(4), 636–651.

    Article  CAS  Google Scholar 

  • Rogula-Kozłowska, W., Kozielska, B., Błaszczak, B., & Klejnowski, K. (2012). The mass distribution of particle-bound PAH among aerosol fractions: A case-study of an urban area in Poland. In T. Puzyn & A. Mostrag-Szlichtyng (Eds.), Organic pollutants ten years after the Stockholm convention—Environmental and analytical update (pp. 163–190). Rijeka: InTech.

    Google Scholar 

  • Rogula-Kozłowska, W., Kozielska, B., & Klejnowski, K. (2013). Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bulletin of Environmental Contamination and Toxicology, 91(3), 349–355.

    Article  Google Scholar 

  • Seifert, W. K., & Moldowan, J. M. (1986). Use of biological markers in petroleum exploration. In R. B. Johns (Ed.), Methods in geochemistry and geophysics (pp. 261–290). Amsterdam: Elsevier.

    Google Scholar 

  • Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry, 17(3), 129–162.

    Article  CAS  Google Scholar 

  • Tang, N., Hattori, T., Taga, R., Igarashi, K., Yang, X., Tamura, K., et al. (2005). Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries. Atmospheric Environment, 39(32), 5817–5826.

    Article  CAS  Google Scholar 

  • Wiley/NBS Registry of Mass Spectral (2000).

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33(4), 489–515.

    Article  CAS  Google Scholar 

  • Zaciera, M., Kurek, J., Dzwonek, L., Feist, B., & Jędrzejczak, A. (2012). Seasonal variability of PAHs and nitro-PAHs concentrations in total suspended particulate matter in ambient air of cities of silesian voivodeship. Environment Protection Engineering, 38, 45–50.

    CAS  Google Scholar 

  • Zhang, X. L., Tao, S., Liu, W. X., Yang, Y., Zuo, Q., & Liu, S. Z. (2005). Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: A multimedia approach. Environmental Science and Technology, 39(23), 9109–9114.

    Article  CAS  Google Scholar 

Download references


The research was supported by the Polish Ministry of Science and Higher Education, Grant No. N523 751840. Sampling of diesel exhaust particulate matter by BOSMAL Automotive Research and Development Institute Ltd is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Monika J. Fabiańska.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary Material contains Figure S1 showing a map with sampling sites. Distribution of the following compounds is shown in ion chromatograms: n-alkanes (Figure S2), pentacyclic triterpanes (Figure S3), steranes (Figure S4), diisopropylnaphthalenes (Figure S5), and methylchrysenes with methylpyrenes (Figure S6) (PDF 9919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabiańska, M.J., Kozielska, B., Konieczyński, J. et al. Sources of organic pollution in particulate matter and soil of Silesian Agglomeration (Poland): evidence from geochemical markers. Environ Geochem Health 38, 821–842 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: