Skip to main content

Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions

Abstract

Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50 % of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98 %) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27 % for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmann, D., Krumholz, L. R., Hemond, H. F., Lovley, D. R., & Morel, F. M. M. (1997). Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environmental Science and Technology, 31(10), 2923–2930.

    CAS  Article  Google Scholar 

  • Bentley, R., & Chasteen, T. G. (2002). Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews, 66(2), 250–271.

    CAS  Article  Google Scholar 

  • Campbell, K. M., Malasarn, D., Saltikov, C. W., Newman, D. K., & Hering, J. G. (2006). Simultaneous microbial reduction of iron(III) and arsenic[V] in suspensions of hydrous ferric oxide. Environmental Science and Technology, 40, 5950–5955.

    CAS  Article  Google Scholar 

  • Cummings, D. E, Jr., Caccavo, F., Fendorf, S., & Rosenzweig, R. F. (1999). Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environmental Science and Technology, 33, 723–729.

    CAS  Article  Google Scholar 

  • Dong, H. (2012). Clay–microbe interactions and implications for environmental mitigation. Elements, 8, 113–118.

    CAS  Article  Google Scholar 

  • Dong, H., Kukkadapu, R., Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., & Kostandarithes, H. M. (2003). Microbial reduction of structural Fe(III) in illite and Goethite. Environmental Science and Technology, 37, 1268–1276.

    CAS  Article  Google Scholar 

  • Fendorf, S., Eich, M. J., Grossl, P., & Sparks, D. L. (1997). Arsenate-73 uptake by components of several acidic soils and its implication for phosphate retention. Environmental Science and Technology, 31, 315–320.

    CAS  Article  Google Scholar 

  • Gates, W. P., Slade, P. G., Manceau, A., & Lanson, B. (2002). Site occupancies by iron in nontronites. Clays and Clay Minerals, 50, 223–239.

    CAS  Article  Google Scholar 

  • Halajnia, A., Oustan, S., Najafi, N., Khataee, A. R., & Lakzian, A. (2012). The adsorption characteristics of nitrate on Mg–Fe and Mg–Al layered double hydroxides in a simulated soil solution. Applied Clay Science, 70, 28–36.

    CAS  Article  Google Scholar 

  • Herbel, M. J., & Fendorf, S. (2006). Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228, 16–32.

    CAS  Article  Google Scholar 

  • Huang, J. H., Voegelin, A., Pombo, S. A., Lazzaro, A., Zeyer, J., & Kretzschmar, R. (2011). Influence of arsenate adsorption to ferrihydrite, goethite, andboehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environmental Science and Technology, 45, 7701–7709.

    CAS  Article  Google Scholar 

  • Jaisi, D. P., Kukkadapu, R. K., Eberl, D. D., & Dong, H. (2005). Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica et Cosmochimica Acta, 69, 5429–5440.

    CAS  Article  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., Burgos, W. D., Barnett, M. O., & Roden, E. E. (2005). Chemical reduction of U(VI) by Fe(II) at the solid water interface using natural and synthetic Fe(III) oxides. Environmental Science and Technology, 39, 5642–5649.

    CAS  Article  Google Scholar 

  • Jeon, B. H., Dempsey, B. A., Royer, R. A., & Burgos, W. D. (2004a). Low-temperature oxygen trap for maintaining strict anoxic conditions. Journal of Environmental Engineering, 130(11), 1407–1410.

    CAS  Article  Google Scholar 

  • Jeon, B. H., Kelly, S. D., Kemner, K. M., Barnett, M. O., Burgos, W. D., Dempsey, B. A., & Roden, E. E. (2004b). Microbial reduction of U(VI) at the solid water interface. Environmental Science and Technology, 38, 5649–5655.

    CAS  Article  Google Scholar 

  • Jiang, S., Lee, J. H., Kim, D., Kanaly, R. A., Kim, M. G., & Hur, H. G. (2013). Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities. Environmental Science and Technology, 47, 8616–8623.

    CAS  Google Scholar 

  • Joanne, M. S., Lindsay, I. S., Aimin, W., Dean, C., De Pascal, W. D., & Joan, M. M. (2002). New arsenite-oxidizing bacteria isolated from Australian gold mining environments phylogenetic relationships. Geomicrobiology Journal, 19, 67–76.

    Article  Google Scholar 

  • Jones, C. A., Langner, H. W., Anderson, K., McDermott, T. R., & Inskeep, W. P. (2000). Rates of microbially mediated arsenate reduction and solubilization. Soil Science Society of America Journal, 64, 600–608.

    CAS  Article  Google Scholar 

  • Keeling, J. L., Raven, M. D., & Gates, W. P. (2000). Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals, 48, 537–548.

    CAS  Article  Google Scholar 

  • Kocar, B. D., Borch, T., & Fendorf, S. (2010). Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica et Cosmochimica Acta, 74, 980–994.

    CAS  Article  Google Scholar 

  • Kocar, B. D., Polizzotto, M. L., Benner, S. G., Ying, S. C., Ung, M., Ouch, K., et al. (2008). Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Applied Geochemistry, 23, 3059–3071.

    CAS  Article  Google Scholar 

  • Lee, S. H., Jung, W., Jeon, B. H., Choi, J. Y., & Kim, S. (2011). Abiotic subsurface behaviors of As(V) with Fe(II). Environmental Geochemistry and Health, 33, 13–22.

    CAS  Article  Google Scholar 

  • Lee, J. H., Roh, Y., Kim, K. W., & Hur, H. G. (2007). Organic acid dependent iron mineral formation by a newly isolated iron-reducing bacterium, Shewanella sp. HN-41. Geomicrobiology Journal, 24, 31–41.

    CAS  Article  Google Scholar 

  • Lin, Z., & Puls, R. W. (2000). Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process. Environmental Geology, 39, 753–759.

    CAS  Article  Google Scholar 

  • Lovley, D. (2013). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In E. D. Rosenberg, E. F. Stackebrandt, S. Lory & F. Thompson (Eds.), The prokaryotes–prokaryotic physiology and biochemistry (pp. 287–308). Heidelberg: Springer.

  • Manning, B. A., & Goldberg, S. (1996). Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals, 44, 609–623.

    CAS  Article  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997). Adsorption and stability of Arsenic(III) at the clay mineral-water interface. Environmental Science and Technology, 31, 2005–2011.

    CAS  Article  Google Scholar 

  • Meng, X.G., & Wang, W. (1998). Speciation of arsenic by disposable cartridges. In Book of posters of the third international conference on arsenic exposure and health effects. Society of Environmental Geochemistry and Health, University of Colorado at Denver, Denver, CO.

  • Mohapatra, D., Mishra, D., Chaudhury, G. R., & Das, R. P. (2007). Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean Journal of Chemical Engineering, 24, 426–430.

    CAS  Article  Google Scholar 

  • Nicholas, D. R., Ramamoorthy, S., Palace, V., Spring, S., Moore, J. N., & Rosenzweig, R. F. (2003). Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation, 14, 123–137.

    CAS  Article  Google Scholar 

  • Ona-Nguema, G., Morin, G., Wang, Y., Menguy, N., Juillot, F., Olivi, L., et al. (2009). Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica et Cosmochimica Acta, 73, 1359–1381.

    CAS  Article  Google Scholar 

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505–508.

    CAS  Article  Google Scholar 

  • Royer, R. A., Dempsey, B., Jeon, B. H., & Burgos, W. (2004). Inhibition of biological reductive dissolution of hematite by ferrous iron. Environmental Science and Technology, 38, 187–193.

    CAS  Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.

  • Stookey, L. I. (1970). Ferrozine—A new spectrophotometric regent for iron. Analytical Chemistry, 42, 779–781.

    CAS  Article  Google Scholar 

  • Zachara, J. M., Fredrickson, J. K., Li, S. W., Kennedy, D. W., Smith, S. C., & Gassman, P. L. (1998). Bacterial reduction of crystalline Fe(III) oxides in single phase suspension and subsurface materials. American Mineralogist, 83, 1426–1443.

    CAS  Google Scholar 

  • Zeng, L. (2004). Arsenic adsorption from aqueous solutions on an Fe(III)–Si binary oxide adsorbent. Water Quality Research Journal of Canada, 39, 267–275.

    CAS  Google Scholar 

  • Zhang, X., Jia, Y., & Wang, S. (2012). Bacterial reduction and release of adsorbed arsenate on Fe(III)-, Al- and coprecipitated Fe(III)/Al-hydroxides. Journal of Environmental Sciences, 24, 440–448.

    Article  Google Scholar 

  • Zhang, H., & Selim, H. M. (2005). Kinetics of arsenate adsorption–desorption in soils. Environmental Science and Technology, 39, 6101–6108.

    CAS  Article  Google Scholar 

  • Zobrist, J. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34, 4747–4753.

    CAS  Article  Google Scholar 

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology, 34, 4747–4753.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support of Ferdowsi University of Mashhad, Iran, and Mine Reclamation Corporation (MIRECO), S. Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong-Hun Jeon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghorbanzadeh, N., Lakzian, A., Halajnia, A. et al. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions. Environ Geochem Health 37, 997–1005 (2015). https://doi.org/10.1007/s10653-015-9708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9708-x

Keywords

  • Adsorption
  • Arsenic
  • Bioreduction
  • Clay minerals
  • Shewanella putrefaciens